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Home Health Care Delivery Problem

Aldy Gunawan · Hoong Chuin Lau · Kun Lu.

Abstract We address the Home Health Care Delivery Problem (HHCDP), which
is concerned with staff scheduling in the home health care industry. The goal is to
schedule health care providers to serve patients at their homes that maximizes the
total collected preference scores from visited patients subject to several constraints,
such as workload of the health care providers, time budget for each provider and
so on. The complexity lies in the possibility of cancellation of patient bookings
dynamically, and the generated schedule should attempt to patients’ preferred
time windows. To cater to these requirements, we model the preference score as
a step function which depends on the arrival time of the visit and the resulting
problem as the Team Orienteering Problem (TOP) with soft Time Windows and
Variable Profits. We propose a fast algorithm, Iterated Local Search (ILS), which
has been widely used to solve other variants of the Orienteering Problem (OP). We
first solve the modified benchmark Team OP with Time Window instances followed
by randomly generated instances. We conclude that ILS is able to provide good
solutions within reasonable computational times.

1 Introduction

The demand for home health care (HHC) services has increased substantially due
to population aging [20]. HHC provides a wide range of services, including nursing
care, medical, paramedical and social services, that can be provided to patients at
home [14,16]. Due to aging populations, the demand for HHC is rapidly increasing.
For example, in 2011, more than 4 million patients received HHC services in the
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U.S. [6]. Ministry of Health (MOH) Singapore introduces Intermediate and Long-
Term Care (ILTC) services for patients who require further care and treatment
after being discharged from an acute hospital as well as community-dwelling senior
residents who may be frail and need supervision or assistance with their activities
of daily living. In 2013, MOH developed a set of home care guidelines.

This study addresses a particular application problem of the staff scheduling in
the home health care industry, namely the Home Health Care Delivery Problem
(HHCDP), on a daily basis. In the context of the classical scheduling problem,
HHCDP is considered as a workforce scheduling and routing problem. Workforce
scheduling and routing problem refers to those scenarios involving the mobiliza-
tion of personnel in order to perform work related activities at different locations
[2]. Staffs are mostly required to travel from one location to other locations in
order to perform the work since the number of works across different locations
is usually larger than the available number of employees. Several real-world re-
quirements, such as time windows, transportation modality, start-end locations,
skills and qualifications, increase the complexity of the problem. For more details
about workforce scheduling and routing problems, the reader can refer to [2]. The
HHCDP is considered as a combination of staff rostering and VRP with time
windows in [25].

In our context, instead of considering as a VRP (which is in essence a demand
perspective), we view this problem from the supply perspective as well. While we
try to satisfy as many patients as possible, the number of requests may exceed
the service capacity and some of them may be cancelled after the schedule has
been generated. Since we want to maximize the patients’ satisfaction, measured
in terms of scores, our problem can be modelled as a variant of the Orienteering
Problem (OP).

In the standard OP, a set of agents are scheduled to serve a set of customers
(e.g. patients). Each agent is limited by the time budget and time windows. Each
customer can only be visited at most once. For simplicity, we assume that all
agents start and end at the same location (e.g. the hospital). The problem incor-
porates other real-world requirements related to the health care industry, such as
the continuity of care, workload fairness and demand uncertainty (due to request
cancellations). We allow the agent to arrive late with a certain penalty value rather
than not visiting the patient. In the OP term, the collected score is affected by the
penalty value, if any. As some requests from patients may be cancelled due to un-
foreseen factors after the schedule has been generated, we express such uncertainty
as a probability of occurrence which is assumed to be known beforehand.

Hence, this paper considers HHCDP from both provider and patient perspec-
tives - while we maximize the workload utilization rate of providers without vi-
olating their time budgets, we also maximize the satisfaction level of patients
with respect to the number of patients to be visited by allowing late arrivals. We
term our problem as the Team OP with soft Time Windows and Variable Profits
(TOPsTWVP). For a comprehensive review of the OP, the reader can refer to the
two surveys by Vansteenwegen et al. [23] and Gunawan et al. [10].

We explore the potential of Iterated Local Search (ILS) to solve HHCDP. ILS
is a simple but effective metaheuristic [15] and has been applied successfully to
solve different variants of the OP, such as works by Vansteenwegen et al. [24] and
Gunawan et al. [8,11]. We adopt a similar algorithm [11] with several modifications,



such as tackling variable scores/profits, and soft time window constraints. Here,
we name it as Enhanced ILS (EnILS).

The main contributions of this paper are listed below:

– We introduce a new variant of the Team Orienteering Problem with soft Time
Windows and Variable Profits (TOPsTWVP). To the best of our knowledge,
this is the first study dealing with both soft Time Windows and Variable
Profits. In this problem, late service is allowed with an appropriate penalty that
affects the score/profit. By relaxing the time windows, the number of visited
patients will increase without affecting patients’ satisfaction significantly.

– Most of interesting applications of the OP are in logistics, tourism and defense.
We extend the application of the OP to solve the Home Health Care Scheduling
Problem (HHCSP).

– We adopt and implement a fast Iterated Local Search algorithm that has been
used for solving other variants of the OP [11]. Note that some obtained results
are also feasible for the original TOPTW problem. They are comparable to the
state-of-the-art algorithms.

The remainder of this paper is organized as follows. Section 2 summarizes
the relevant literature. The description of the HHCDP problem including the
mathematical formulation, is presented in Section 3. The Iterated Local Search
is explained in Section 4. Section 5 presents computational experiments. Finally,
Section 6 describes the conclusions, limitations and possible future works of our
research.

2 Related Work

Since our problem is an extension of the TOPsTWVP model, we start by review-
ing the literature on the OP and its related variants briefly, followed by the related
research on the HHCDP. The OP has been extensively studied in various applica-
tions, such as the mobile crowdsourcing problem, the Tourist Trip Design Problem
(TTDP), the logistic problem and others [10].

Erdoǧan and Laporte [5] introduced the OP with Variable Profits (OPVP). The
score for each node is associated with a parameter that determines the percentage
of score collected, either as a discrete or continuous function of the time spent.
One example of the OPVP application arises in the fishing sectors. Longer stays at
certain locations may increase the amount of fish caught. In their work, a branch-
and-cut algorithm is proposed to solve some modified TSP instances. There is still
room for improvement since the algorithm requires large computational times and
can only solve small instances.

Mota et al. [18] modeled the operating room scheduling problem in terms of
choice elective patients, aiming for throughput maximization, as a new variant of
the TOPTW, namely the TOP double Time Windows (TOPdTW). Both paths
and nodes have a time window to be fulfilled. The number of paths equals to the
number of operating rooms times the number of shifts times the number of days
while the number of nodes refers to the number of operating rooms. A genetic algo-
rithm is proposed to solve benchmark TOPTW instances and randomly generated
TOPdTW instances. The computational results are promising although they are
still preliminary.



The Home Health Care problem aims to provide the care and support needed
to patients in their own homes [1]. It covers different supports, such as elderly
people, people with physical disabilities. Cisse et al. [4] classified the Home Health
Care Routing and Scheduling Problem (HHCRSP) process into three different
levels: strategic, tactical and operational levels, and mapped the into related OR
problems. They extended the earlier review [6] which only covers articles before
2016. The details of relevant features, constraints, objectives and methods in the
existing HHCRSP studies are also presented.

Rasmussen et al. [21] looked at the daily home care crew scheduling problem as
a generalization of the Vehicle Routing Problem with Time Windows (VRPTW).
The problem is formulated as a set partitioning problem and solved by an exact
branch-and-price algorithm. Visit clustering schemes are also developed in order
to reduce computational times significantly, with the cost of the quality of the
solutions. The schemes are able to find solutions of larger instances, which cannot
be solved optimally. Akjiratikarl et al. [1] also considered the home care worker
scheduling problem as the VRPTW.

Yuan and Fügenschuh [25] presented a case study on the problem of scheduling
nurses on a weekly basis with the objective of minimizing the total cost as well
as the total working time, without compromising the service quality. The problem
is treated as a combination of the staff rostering problem and the VRPTW. The
proposed algorithm which is based on local search approaches can produce an
estimation of cost reduction up to 10% in solving a real-world instance.

Lin et al. [14] addressed a particular problem of the Home Health Care that
provides therapy services, namely the Therapist Assignment Problem (TAP). The
problem is described from patient and therapist perspectives and modeled as a
mixed-integer programming model. The model is validated by using an instance
extracted from a rehabilitation service provide in Hong Kong and some randomly
generated instances.

Chen et al. [3] introduced a multi-period Home Health Care Scheduling Prob-
lem under stochastic service and travel times. The chance constraints are intro-
duced into the formulation in order to cope with uncertainty in durations. The
effectiveness of the proposed approaches is tested on synthetic instances for both
deterministic and stochastic scenarios.

Nguyen and Montemanni [19] addressed the nurse home services problem and
proposed two mixed integer linear programming models based on Big-M method
and arc timing method, respectively. Both models cater soft and hard time win-
dows. Certain penalties would be imposed if the service starts between certain
periods. However, hard time windows are also imposed to avoid unnecessary over-
time. Experiments are conducted on a set of randomly generated instances.

3 Home Health Care Delivery Problem (HHCDP)

We formulate the HHCDP as an Integer Linear Programming (ILP) model. The
HHCDP is defined as the following tuple: 〈N,T 〉. Let N be a set of locations,
N = Nt ∪ Ns, where Nt and Ns represent a set of patients’ locations and health
care providers’ start-end locations, respectively. Here, we assume start and end
locations for all providers are at the same location, location 0 (Ns = {0}). T is a



symmetric pairwise travel time matrix and tij ∈ T denotes the travel time between
two different locations i and j. Let M be a set of health care providers.

Each patient’s location i ∈ Nt has a positive dependent reward uim that would
be collected when he/she is visited by provider m. In most cases, patients prefer
to be visited by their primary provider. This is reflected by a higher reward in
our case. Each visit requires a service time Ti and it should be started within
a particular time window [ei, li]. ei and li refer to the earliest and latest times
allowed for starting the visit at location i. We allow a late arrival with the cost
of penalty although this is undesirable. On the other hand, if the provider arrives
before ei, the waiting time occurs.

Since we assume location 0 is the start and end locations, therefore u0m =
T0 = 0. Each provider m ∈ M is constrained within the time limit [e0, l0]. We
have e0 = 0 and l0 = Tmax, where Tmax is the time budget or the maximum
duration to complete a duty day. The objective is to maximize the expected total
collected score from visiting patients by all providers. We include the penalty in the
objective function value due to a late visit. The penalty is calculated by multiplying
a certain percentage of reduction to a particular score {(R1, R2, . . . , Rn) ∈ [0, 1]}.
For example, if the arrival at location i is late and less than δi, the adjusted score
would be R1 × uim. The details can be referred below:

ûim =



0, if (Sim − li) ≤ 0;

R1 × uim, if 0 < (Sim − li) ≤ δi;
R2 × uim, if δi < (Sim − li) ≤ 2× δi;
...

Rn × uim, if (n− 1)× δi < (Sim − li) ≤ n× δi.

The following decision variables are used in the mathematical model:

– Xijm = 1 if a visit to patient i is followed by a visit to patient j by provider
m, 0 otherwise.

– Yim = 1 if a visit to patient i by provider m, 0 otherwise.
– Ŝim = the start time of service at patient i by provider m.

The HHCDP mathematical formulation is adopted from the work of [11] with
several modifications:

Maximize
∑

m∈M

∑
i∈N\{0}

πiYimûim (1)

∑
j∈N\{0}

X0jm = 1 , ∀m ∈M (2)

∑
i∈N\{0}

Xi0m = 1 , ∀m ∈M (3)

∑
i∈N\{0}

Xikm = Ykm , ∀k ∈ N \ {0},m ∈M (4)

∑
j∈N\{0}

Xkjm = Ykm , ∀k ∈ N \ {0},m ∈M (5)



∑
m∈M

Yim ≤ 1 , ∀i ∈ N \ {0} (6)

Ŝim ≥ ei ,∀m ∈M, i ∈ N (7)

Ŝim + Ti + tij − Ŝjm ≤ L̂(1−Xijm) ,∀i, j ∈ N,m ∈M (8)

∑
i∈N\{0}

(TiYim +
∑

j∈N\{0},j 6=i

tijXijm) ≤ Tmax , ∀m ∈M (9)

Ŝim ≥ 0 , ∀i ∈ N,m ∈M (10)

Xijm, Yim ∈ {0, 1} ,∀i, j ∈ N,m ∈M (11)

The objective function 1 is to maximize the expected total collected score from
visited patients’ locations from all providers. Each location i has a probability
of occurrence πi on a particular day. Each patient has a chance to cancel the
appointment. Constraints 2 ensure that each provider starts and ends at location
0. Constraints 4 and 5 determine the connectivity of each provider m. Constraints
6 guarantee that each location i, except location 0, is visited at most once.

Constraints 7 ensure that the start time at location i of provider m is after ei.
Constraints 8 imply that if locations i and j are visited consecutively, then the
start time at location j has to be greater than or equal to the start time at location
i plus the service time at location i and the travel time from locations i to j. They
ensure the timeline of each provider m. Note that L̂ is a very large constant value.
Constraints 9 limit the time budget for each provider m by Tmax. Constraints 10
are the non-negativity condition for Ŝim. Finally, the binary conditions for Xijm

and Yim are constrained by equations 11.

4 Solution Approach

In this section, we describe the Iterated Local Search (ILS) algorithm, namely
Enhanced ILS (EnILS), which is adopted from the one proposed by Gunawan et
al. [11]. ILS has been successfully used to solve various variants of the OP, such
as OPTW [8], TDOP [9] and TOPTW [11]. We extend the applicability of the
algorithm in solving the HHCDP. EnILS consists of two phases, constructive and
improvement phases. We only briefly explain the algorithm especially the parts
which are different from the original one. For more details of the original ILS,
readers can refer to the work of Gunawan et al. [11].



4.1 Construction Phase

An initial solution is built by a construction heuristic. The idea is to generate a
set of all feasible candidate requests F that can be inserted. Each element of F ,
denoted as 〈n, p,m〉, represents a feasible insertion of request n in position p of
provider m. This set can be very large; therefore, we only consider a subset of
possible insertions Fs ⊂ F . Those feasible insertions are ranked according to their
ration,p,m values. The ratio value for each insertion is calculated based on equation
12. Diffn,p,m represents the difference between the total time spent before and
after the insertion of location n in position p of provider m.

ration,p,m =

(
πi × û2nm
Diffn,p,m

)
(12)

In order to select which insertion to be picked from Fs, we apply the idea of
the Roulette-Wheel selection concept [7]. The main idea is that the probability of
an element being selected is proportional to its ration,p,m value. The element with
a higher probability has a higher chance to be selected. F and Fs are updated
iteratively. This constructive heuristic is applied until F = ∅.

4.2 Improvement Phase

In this phase, we implement a metaheuristic based on Iterated Local Search (ILS)
in order to further improve the quality of the initial solution S0 at a particular
iteration. We denote S∗ as the best found solution so far at a particular iteration,
respectively. For the first iteration of this improvement phase, S∗ equals to S0.

The main idea of ILS is to explore the solution space by generating and eval-
uating the neighbors of S0. We apply LocalSearch in order to generate the best
neighborhood. In LocalSearch, we run six different operators consecutively, as
shown in Table 1. The first four operators focus on rearranging the visited loca-
tions of providers in order to provide more times to allocate more locations which
is done by the last two operators. The first improving neighbor replaces S0. If a
stagnation condition is met, a perturbation strategy on S0 is then applied. The
outline of the ILS algorithm is presented in Algorithm 1.

Table 1: Local Search operations

Operations Descriptions
SWAP1 Exchange two locations within one provider
SWAP2 Exchange two locations within two providers
2-OPT Reverse the sequence of certain locations within one provider
MOVE Move one location from one provider to another provider
INSERT Insert locations into a provider
REPLACE Replace one scheduled location with one unscheduled location

The list of operators are identical with the one of [11]. The major difference
lies in the checking process when the operator is accepted or not. For example,
we may allow swapping two locations (SWAP1 or SWAP2) although the objective
function value maybe worse due to late arrivals; however, we may be able to insert
more locations in a particular provider later. This arrangement corresponds to



Algorithm 1 ILS (N,M)

S0 ← Construction(N,M)
S0 ← LocalSearch(S0, N

∗, N ′,M)
S∗ ← S0

NoImpr ← 0
while TimeLimit has not been reached do

S0 ← Perturbation(S0, N
∗, N ′,M)

S0 ← LocalSearch(S0, N
∗, N ′,M)

if S0 better than S∗ then
S∗ ← S0

NoImpr ← 0
else

NoImpr ← NoImpr + 1
end if
if (NoImpr+1) Mod Threshold = 0 then

S0 ← S∗

end if
end while
return S∗

the purpose of HHCDP where we allow providers to reach their destinations late
although this is undesirable. Some penalties would be imposed due to lateness.

After applying LocalSearch, we implement the perturbation strategy, Per-

turbation in order to escape from local optima [11]. If the current solution S0
is better than S∗, we update the best found solution so far S∗. This part is re-
lated to the AcceptanceCriterion component of ILS. If S∗ is not updated for a
certain number of iterations, ((NoImpr+1) Mod Threshold = 0), we restart the
search from the best found solution, S∗. Threshold is a parameter that need to
be set. Finally, the entire algorithm will be run within the computational budget,
TimeLimit.

In Perturbation, we apply two different steps: ExchangePath and Shake. Af-
ter a certain number of iterations without improvement, we apply ExchangePath;
otherwise, Shake is selected. The efficiency of our algorithm depends on both steps.
The strategy of selecting two different providers in ExchangePath are based on
generating permutations by adjacent transposition method [13]. This step does
not change the objective function value directly since we only swap all locations
from two different providers. However, in subsequent iterations especially when
we apply LocalSearch, more opportunities for operators that have to be applied
from the first provider to the last one. The other step, Shake, is based on the one
proposed by Vansteenwegen et al. [24]. The focus is to remove certain nodes from
each provider, depends on the starting location and subsequent locations need to
be removed.

5 Experiments

A comprehensive analysis of the results is reported in this section. We first describe
the experiment setup and instances used. We then summarize the performance of
the proposed algorithm, EnILS.



5.1 Experiment Setup and Instances

The algorithm is implemented in Java which is executed on a personal computer
with Intel(R) Core(TM) i5-6500 with 3.2 GHz CPU, 16 GB RAM. Each instance
is run five times for which the average results are presented. We adopt the same
parameter values in the earlier work [11]. The parameter tuning is grounded on
the Design of Experiment (DOE) methodology.

We use two different groups of instances in our experiments. The first group
of instances is taken from the benchmark TOPTW instances [17,22]. The size of
instances varies from 48 to 228 locations with the number of providers up to four
providers. All benchmark instances can be downloaded from http://www.mech.

kuleuven.be/en/cib/op.

Since there are no benchmark TOPsTWVP instances, we modify the TOPTW
instances by 1) assuming the probability of occurrence of node i, πi, is set to one,
2) setting R1, R2, . . . , Rn values for all nodes and providers. The second group of
instances is randomly generated with varying the two above-mentioned points.

5.2 Experiment Results

5.2.1 Modified benchmark TOPTW instances

The most recent comparison of the state-of-the-art algorithms for TOPTW is
conducted by Gunawan et al. [11]. Their proposed algorithms are able to find 50
best known solution values on the available benchmark instances. The experiments
were compared with other algorithms by using the SuperP i [12] in order to ensure
the fairness. Basically, the computational time is adjusted to the speed of the
computers used in other approaches. We could not directly compare our results
with two state-of-the-art algorithms: I3CH [12] and SAILS [11] since we allow soft
time windows in HHCDP. Comparisons of objective function values would have
no significance.

However, we observe that several results of EnILS are also feasible to the
original TOPTW problem. In other words, there is no time window constraint
violation. This could happen since providers also prefer not to delay the service to
patients unless they can visit more patients with the possibility of getting lower
objective function values. The feasible results are summarized in Table 2. We
compare with the results of I3CH and SAILS, referring to I3CH computational
times.

Table 2: Overall Comparison of EnILS to I3CH and SAILS

Instance
Numb

I3CH SAILS
Set < = > < = >

m = 1 76 21 25 1 22 25 0
m = 2 76 17 18 1 18 18 0
m = 3 76 10 8 2 10 10 0
m = 4 76 18 7 2 18 9 0
Total 304 66 58 6 68 62 0



Each instance set consists of 76 instances (Numb). We count how many feasible
solutions which are smaller (<), equal (=) and greater (>) than those of I3CH and
SAILS for each instance set. For example, feasible solutions of EnILS which are
better than the ones of I3CH are 6 instances, in total.

With regards to I3CH results, EnILS is able to obtain 42.8% of feasible in-
stances (130 out of 304 instances). There are 6 instances with better objective
function values while 58 instances with the same objective function values with
the ones of I3CH. For SAILS results, we also obtain the same amount of feasible
instances. Sixty two instances have the same objective function values with the
ones of SAILS.

We also calculate the number of visited locations. The results show that the
number of visited locations is increased since we relax the time window constraints.
The number of visited locations is increased between 6% to 20% from the results
of the TOPTW. On the other hand, the total profit collected is decreased due to
some penalties. From the provider’s perspective in the context of the HHCDP, this
is acceptable since more patients are visited.

5.2.2 Randomly generated instances

We extend the experiments by adding two randomly generated instances where
each has a set of different m values. We set the number of locations up to 100 with
m = four providers. We assume that certain locations have lower probability of
occurrence values (πi). Instance 1 has 50 locations with a probability of occurrence
= 0.5 while Instance 2 has a probability of 0.25.

Table 3 summarizes the results of different scenarios. We emphasize on iden-
tifying how many locations with high probability values would be visited. From
both instances, we observe that the proposed algorithm, EnILS, is able to visit
locations with higher probability values. The percentage of locations with lower
probability values is only up to 20.9%. When the probability of occurrence is much
lower (e.g. 0.25), the results show that we should not visit any patients since they
may cancel their appointments on that particular day. In other words, they are
not the first priority of the visit. From the provider perspective, it is an indication
that resources need to be increased in order to satisfy all patients although they
are lower priorities.

Table 3: Random Instances Results

Instance m
Number of locations with Number of visited locations with

Total
πi = 1 πi = 0.5 πi = 1 πi = 0.5

Instance 1

1 50 50 9 (81.8%) 2 (18.2%) 11
2 50 50 19 (86.4%) 3 (13.6%) 22
3 50 50 29 (85.3%) 5 (14.7%) 34
4 50 50 34 (79.1%) 9 (20.9%) 43

πi = 1 πi = 0.25 πi = 1 πi = 0.25 Total

Instance 2

1 50 50 11 (100.0%) 0 (0.0%) 11
2 50 50 22 (100.0%) 0 (0.0%) 22
3 50 50 34 (97.1%) 1 (2.9%) 35
4 50 50 39 (88.6%) 5 (11.4%) 44



6 Conclusion

In this paper, we address the Home Health Care Delivery Problem (HHCDP) and
model it as a variant of the Orienteering Problem (OP), namely the Team OP
with soft Time Windows and Variable Profit (TOPsTWVP). In HHCDP, we al-
low a late visit to the patients. The problem is solved by a fast algorithm, Iterated
Local Search. The ILS algorithm is able to provide good solutions within reason-
able computational times for two different sets of instances: modified benchmark
TOPTW instances and randomly generated instances.

We summarize some directions in which future work on this problem can be
explored. The optimal solutions or best known solutions for modified instances and
randomly generated instances are still unknown. Therefore, we consider to develop
an exact algorithm in order to provide us with the optimal solutions. In order to
test the robustness of the proposed algorithm, we will apply the sampling based
approach in order to simulate the probability of occurrence of demands in certain
locations and analyze the performance of the proposed algorithm. Certain locations
may have higher probabilities and it is expected that the proposed algorithm
select those locations with higher probabilities. More randomly generated instances
would be generated in order to provide and capture real world scenarios.
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