
MIC 2013: The X Metaheuristics International Conference id–1

Multi-Agent Orienteering Problem with Time-Dependent
Capacity Constraints

Cen Chen, Shih-Fen Cheng, Hoong Chuin Lau

Singapore Management University
80 Stamford Road, 178902, Singapore

{cenchen.2012, sfcheng, hclau}@smu.edu.sg

1 Introduction
The Orienteering Problem (OP), as originally defined by Tsiligirides [6], is the problem of cross-country
sport in which participants get rewards from visiting a predefined set of checkpoints. As Orienteering
Problem can be used to describe a wide variety of real-world problems like route planning for facil-
ity inspection, patrolling of strategic location, and reward-weighted traveling salesman problem, it has
attracted continuous interests from researchers and a large number of variants and corresponding algo-
rithms for solving them have been introduced. The most important variants of the orienteering problems
include: 1) The Team Orienteering Problem (TOP), in which a group of centrally controlled agents are
sent to collect rewards by visiting check points [1, 2], 2) The Orienteering Problem with Time Windows
(OPTW), in which service time windows are specified for each node [3], and 3) the combination of the
above two variants (The Team Orienteering Problem with Time Windows, or TOPTW) [5].

In this paper, we introduce a new variant of the OP which we believe to be first of its kind. Our
proposal includes one major new features: 1) The inclusion of individual preference and time-dependent
rewards. 2) Nodes are now subject to time-dependent capacity constraints. We call this new variant the
Multi-agent Orienteering Problem with Time-Dependent Capacity Constraints (MOPTCC).

The application domain that motivates our creation of this new variant is the crowd control problem
in the tourism industry. For tourism operators, one critical task they need to perform on a daily basis is
to provide proper guidance to visitors. Such guidance may be passive, which is delivered via signboard
or staff’s ground instructions. The guidance can also be active, in which case individual visitors may be
guided by following instructions delivered in real time to their mobile devices. As the venue operator
needs to watch closely how queues build up at different attractions throughout the day, it needs to generate
recommendations for individual visitors, following their respective preferences, while observing capacity
constraints it sets for different attractions throughout the day.

The “multi-agent” feature of MOPTCC allows us to produce schedules based on individual visitor’s
preferences. On the other hand, the feature of “time-dependent node capacities” allows us to set the limit
of visitors at different attractions to avoid over-crowding. Besides formally formulate the MOPTCC, we
propose two propose two solution approaches: 1) a mixed integer linear program (MILP) that computes
the exact solution; and 2) an effective sampled fictitious play algorithm [4] that considerably reduces the
computational time. Experimentations have been done to evaluate the solution quality and effectiveness.

2 Mathematical Programming Formulation
In the MOPTCC, a set of n nodes is given with attached utility scores stik which differs with time and an
agent’s own preferences. Two fixed nodes,the start node 1 and the exit node n, are set during the graph
construction. Each node is associated with a service time vj and time-dependent waiting times Qjt. The
traveling time from node i to node j is given as tij . m Agents are sent to collect the utility rewards. They
may or may not be able to visit all the nodes, as they are constrained by their own time budget T kn which
is less than the whole network expire time T .

The MOPTCC can be formulated as an integer programming problem with the following decision
variables: xtijk = 1 if agent k leaves node i at time t and goes for node j; otherwise, 0. It checks whether
the edge between the two nodes i, j is to be visited at time t. Qtd is the waiting time of node d at time t.

Singapore, August 4–8, 2013



id–2 MIC 2013: The X Metaheuristics International Conference

max

T∑
t=1

m∑
k=1

n∑
i=1

n∑
j=1

stikx
t
ijk, (1)

s.t.

T∑
t=1

n∑
j=1

xt1jk =

T∑
t=1

n∑
i=1

xtink = 1, ∀k = 1, . . . ,m, (2)

T∑
t=1

n∑
i=1

xtidk =

T∑
t=1

n∑
j=1

xtdjk, ∀d = 1, . . . , n; ∀k = 1, . . . ,m, (3)

T∑
t=1

n∑
j=1

xtijk 6 1, ∀i = 1, . . . , n; ∀k = 1, . . . ,m, (4)

Qt
d = Qt−1

d +
m∑

k=1

n∑
i=1

x
t−tid
idk −

m∑
k=1

n∑
j=1

xtdjk, ∀d = 1, . . . , n;∀t = 1, . . . , T, (5)

Qt
d 6 QMax

d , ∀d = 1, . . . , n;∀t = 1, . . . , T, (6)
T∑

t=1

n∑
i=1

(t+ vd +Q
t+tid
d + tid)x

t
idk =

T∑
t=1

n∑
j=1

txtdjk, ∀d = 2, . . . , n− 1; ∀k = 1, . . . ,m, (7)

T∑
t=1

n∑
j=1

t× xt1jk = Tk
1 ;

T∑
t=1

n∑
j=1

t× xtnjk 6 Tk
n , ∀k = 1, . . . ,m, (8)

xtijk ∈ {0, 1} , ∀i, j, k, t. (9)

The objective function 1 is to maximize the total utility collected. Constraint 2 ensures that for each
agent k, he starts at node 1 and ends at node n. Constraint 3 guarantees the connectivity of the path for
each agent k. Constraint 4 ensures that for each agent k, each node is visited at most once. Constraint
5 defines the waiting time for each node d at time t. We assume the service rate is 1 for all the nodes.
Thus Qtd equals the waiting time of the last time stamp t − 1 plus the inflow and minus the outflow of
current time t for this node. Constraint 6 ensures the waiting time Qtd to not exceed its corresponding
threshold QMax

d . Constraint 7 ensures consistency of arriving and leaving time of node d for each agent
k. Constraint 8 ensures that for each agent, the schedule starts at T k1 and ends before T kn as he specifies.

Constraint 5 can be expressed as as constraint 10 by solving the recursion. When Qtd is substituted
into the constraint 7, this constraint will become non-linear which introduces scalability issue. To address
it, we represent the equivalent linear constraints 11,12,13 to transform the original formulation into a
mixed integer linear programming (MILP) where αstijdlk and βstijdlk are intermediate variables.

Qt
d = Q1

d +

m∑
k=1

n∑
i=1

t−tid∑
s=2−tid

xsidk −
m∑

k=1

n∑
j=1

t∑
s=2

xsdjk, ∀d = 1, . . . , n;∀t = 1, . . . , T, (10)

T∑
t=1

n∑
i=1

(t+ vd + tid)x
t
idk +

T∑
t=1

n∑
i=1

m∑
l=1

n∑
j=1

t∑
s=2−tid

αst
ijdlk −

T∑
t=1

n∑
i=1

m∑
l=1

n∑
j=1

t+tid∑
s=2

βst
ijdlk

=

T∑
t=1

n∑
j=1

txtdjk, ∀d = 2, . . . , n− 1; ∀k = 1, . . . ,m, (11)

αst
ijdlk 6 xsjdl, α

st
ijdlk 6 xtidk, α

st
ijdlk > xsjdl + xtidk − 1, ∀i, d, j, k, l, s, t (12)

βst
ijdlk 6 xsdjl, β

st
ijdlk 6 xtidk, β

st
ijdlk > xsdjl + xtidk − 1, ∀i, d, j, k, l, s, t (13)

An exact global optimal solution can be reached by solving this multi-agents MILP. However, The
computational cost increases exponentially with the number of agents, nodes and the time horizon.

3 Solution Approach
Since high quality solutions are required and computational time should be limited to a reasonable time, a
sampled fictitious play (SFP in Figure 1) is implemented to improve the solutions and each best response
is computed using a mixed integer programming formulation(MILP) for single agent.

The single agent MILP can be obtained by deriving from the multi-agents model and reducing the di-
mensionality through fixing the rest of the agents’ actions asQinput. In this formulation queue constraints
can be expressed as constraint 14. Similarly, timeline flow constraint 7 can be rewritten and linearized as
constraints 15 for this single agent model.

Singapore, August 4–8, 2013



MIC 2013: The X Metaheuristics International Conference id–3

1: procedure SFP(K, A, S, T)
2: H← INITIALSOLUTIONS()
3: k ← 0
4: BBest ← H0

5: while k < kmax do
6: D← SAMPLE(H, k)
7: for each agent i do
8: Qinput

−i ← AGGREGATEQUEUES(D−i)

9: Bi ← BESTREPLY(K,A, S,T,Qinput
−i )

10: if UTILITY(Bi,D−i) > UTILITY(D) then
11: BBest ← (Bi,D−i)
12: end if
13: end for
14: H← UPDATEHISTORY(B)
15: k ← k + 1
16: end while
17: return BBest
18: end procedure

Figure 1: Sampled Fictitious Play

K is a set of agents. A contains nodes and asso-
ciated information. S specifies the utility scores for
all the agents at each node and each time stamp. T
is a set of the walking times among all the nodes. Q
gives all the waiting times. B is a set of best re-
sponses for every agent given queues as input by
fixing the rest of the agents decisions. D contains
sampled decisions for all the agents based on their
history.

Line 2 generates initial solutions, thus populat-
ing the 0th row of history matrix H. Line 6 performs
uniform sampling from each players history inde-
pendently. If the queue constraints resulting from
the sampling are violated, re-sampling is performed.
Line 9 computes each agent’s best reply Bi to all the
other agents’ sampled decision D−i. Line 14 ap-
pends B at the end of the history matrix H. The above process is repeated until the number of iterations
executed exceeds the threshold.

Qt
d = Q

input
dt +

n∑
i=1

x
t−tid
id and Qt

d 6 QMax
d , ∀d = 1, . . . , n;∀t = 1, . . . , T, (14)

T∑
t=1

n∑
i=1

(t+ vd + tid +Q
input
d,t+tid

)xtid +

T∑
t=1

n∑
i=1

n∑
j=1

αt
ijd =

T∑
t=1

n∑
j=1

txtdjk, ∀d = 2, . . . , n− 1; ∀k = 1, . . . ,m, (15)

αt
ijd 6 xtjd, α

t
ijd 6 xtid, α

t
ijd > xtjd + xtid − 1, ∀ i, d, j, t, (16)

Experimental Results. In all the experiments, utility values were randomly generated ranging from 1
to 5. All the agents start at time 1 and leave before time T . In the Figure 2, we provide a comparison for
the results on small instances by MILP and SFP. SFP constantly performed much faster than MILP on
small instances we experimented with1. In addition, in the Figure 3, we conducted experiments for SFP
on large instances to show the efficiency and effectiveness of this heuristic. We compare the SFP results
with Greedy solutions (Initially assuming there are no queues for each node and adding in agents greedily
one by one). In this experiment, there were 8 nodes and 18 time units involved. We experimented with
the different number of agents for 100 times each and the result on each setting is the average over the
trials.

Agents/ Nodes/ T/ Q Runtime Utility collected

MILP SFP MILP SFP

2 /5 /5 /1 11.54s 2.462s 15 15
2 /5 /8 /1 234.22s 2.830s 19 19
3 /5 /8 /2 - 4.267s - 26

Figure 2: Comparison for MILP and SFP on small instances

Agents/ Nodes/ T/ Q Runtime Utility collected

Greedy SFP

10 /8 /18 /2 318.542s 557 635
20 /8 /18 /2 350.123s 623 690
30 /8 /18 /2 479.674s 608 723

Figure 3: Results for SFP on larger instances

References
[1] Sylvain Boussier, Dominique Feillet, and Michel Gendreau. An exact algorithm for team orienteering problems. 4OR: A Quarterly Journal

of Operations Research, 5(3):211–230, 2007.
[2] I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. The team orienteering problem. European Journal of Operational Research,

88(3):464–474, 1996.
[3] Marisa G. Kantor and Moshe B. Rosenwein. The orienteering problem with time windows. The Journal of the Operational Research

Society, 43(6):629–635, 1992.
[4] Theodore J. Lambert III, Marina A. Epelman, and Robert L. Smith. A fictitious play approach to large-scale optimization. Operations

Research, 53(3):477–489, 2005.
[5] R. Montemanni and L. Gambardella. Ant colony system for team orienteering problems with time windows. Foundations of Computing

and Decision Sciences, 34(4):287—306, 2009.
[6] T. Tsiligirides. Heuristic methods applied to orienteering. The Journal of the Operational Research Society, 35(9):797–809, 1984.

1With respect to the last MILP result, we terminated it after running it for more than 12 hours.

Singapore, August 4–8, 2013


