Noname manuscript No.
(will be inserted by the editor)

SAILS: Hybrid Algorithm for the Team Orienteering
Problem with Time Windows

Aldy Gunawan - Hoong Chuin Lau - Kun Lu

Received: date / Accepted: date

Abstract The Team Orienteering Problem with Time Windows (TOPTW) is the ex-
tended version of the Orienteering Problem where each node is limited by a given
time window. The objective is to maximize the total collected score from a certain
number of paths. In this paper, a hybridization of Simulated Annealing and Iterated
Local Search, namely SAILS, is proposed to solve the TOPTW. The efficacy of the
proposed algorithm is tested using benchmark instances. The results show that the
proposed algorithm is competitive with the state-of-the-art algorithms in the litera-
ture. SAILS is able to improve the best known solutions for 19 benchmark instances.

Keywords Orienteering Problem - Time Windows - Hybrid Algorithm - Simulated
Annealing - Iterated Local Search

1 Introduction

The Team Orienteering Problem with Time Windows (TOPTW) is an extension of
the Orienteering Problem (OP) [11]. A certain number of paths are required to serve
a set of nodes. The visit on each node is limited by a given time window. The score of
a particular node will be received once a node is visited within its time window. The
main objective of the TOPTW is to maximize the total score from all visited nodes.

Since the OP has been proven as a NP-hard problem [5], it is unlikely that the
TOPTW can be solved optimally within polynomial time. It is therefore interesting
to propose fast heuristics to solve the problem, especially when we are dealing with
real life large-scale applications of TOPTW, e.g. a personalized city trip planner [3,
21].

A. Gunawan, H.C. Lau and K. Lu

School of Information Systems, Singapore Management University
Tel.: +65-68085227

Fax: +65-68280901

E-mail: {aldygunawan, hclau, kunlu} @smu.edu.sg

Aldy Gunawan et al.

In this paper, we introduce a hybrid algorithm that combines two well-known
metaheuristics, Iterated Local Search (ILS) and Simulated Annealing (SA). Iterated
Local Search [15] is a simple but effective metaheuristic. In general, since it accepts
only improving solutions or moves, we consider the incorporation of Simulated An-
nealing to avoid early termination in local optimality. Simulated Annealing [9] has
been successfully applied to several combinatorial optimization problems [12—14]. It
has the capability to escape from a local optimum by accepting a worse solution with
a probability that changes over time. Our proposed algorithm is competitive with the
state-of-the-art algorithms. More precisely, we show that it is able to improve the
best known solution values of 19 benchmark instances. Hence, our work also serves
as benchmark for future studies.

The paper is organized as follows. In Section 2, the TOPTW is briefly explained,
including most recent works related to the TOPTW. Section 3 describes the proposed
algorithm, SAILS, in detail. Section 4 is devoted to the experimental results and anal-
ysis. Finally, conclusions and ideas for future works are summarized in Section 5 .

2 The Team Orienteering Problem with Time Windows
2.1 Problem Description

The TOPTW is defined as follows. We are given an undirected network graph G =
(N,A) where N = {0,1,2,...,|N|} is the set of nodes, A = {(i, j) : i # j € N} refers
to the set of arcs connecting two different nodes i and j and M = {1,2,...,|M|} is the
set of paths. The non-negative travel time between nodes i and j is represented as #;;.
Each node i € N has a positive score u; that would be collected the first time the node
i is visited, a service time S; and a time window [e;,[;]. ¢; and [; refer to the earliest
and latest times allowed for starting the visit at node i.

In the TOPTW, it is assumed that node O is the start and end nodes, therefore
ug = So = 0. The visit to node i is successful if it begins within a time window [e;, [;].
Each node can only be visited at most once. The visit is allowed to wait until the
time window begins in the case of an earlier arrival. In the context of TOPTW, the
number of paths is fixed at |M|. Each path m € M is constrained within the time limit
[eo,lp]. We have eg = 0 and [y = T, where T is the time budget or the maximum
duration of the tour. The main objective is to maximize the total collected score of
the visited nodes from |M| paths. The mathematical formulation of the TOPTW can
be found in [21].

2.2 Literature Review

Vansteenwegen et al. [21] introduced an Iterated Local Search (ILS) algorithm to
solve the TOPTW with emphasis on providing a simple, fast and effective algorithm
that can be tailored for a realistic Tourist Trip Design Problem (TTDP). Only two op-
erations of ILS, INSERT and SHAKE, are considered in this deterministic algorithm. A
metaheuristic algorithm based on Ant Colony System (ACS) was proposed by Mon-
temanni and Gambardella [16]. The algorithm was further improved by Montemanni

SAILS: Hybrid Algorithm for the Team Orienteering Problem with Time Windows

et al. [17], namely the Enhanced ACS (EACS) algorithm. The EACS algorithm in-
cludes two additional operations to overcome the drawbacks of ACS. Both operations
are related to the consideration of using the best solution found so far during the con-
struction phase and applying the local search procedure only on those solutions on
which the local search has not been recently applied.

In addition, Lin and Yu [13] proposed two different versions of Simulated An-
nealing, Fast SA (FSA) and Slow SA (SSA), in order to tailor two different scenarios.
FSA is mainly for the applications that need quick responses, while SSA is more con-
cerned about the quality of the solutions at the expense of more computational time.
Labadie et al. [11] introduced an LP-based Granular Variable Neighborhood Search
(GVNS) for solving the TOPTW.

Another ILS algorithm was proposed by Gunawan et al. [6] for solving the OPTW.
The problem is also considered as the TOPTW with |M| = 1. The algorithm is start-
ed by generating an initial feasible solution using a greedy construction heuristic.
The initial solution obtained is further improved by ILS. ILS is mainly based on
several local search components, such as SWAP, 2-OPT, INSERT and REPLACE. The
combination between ACCEPTANCECRITERION and PERTURBATION mechanisms
is implemented to control the balance between diversification and intensification of
the search. Computational results show that ILS is able to improve 8 best known
solutions values of benchmark instances.

The idea of combining some advantages has been brought up by many researchers
for solving different combinatorial optimization problems. Several taxonomies relat-
ed to the hybrid algorithm were introduced by Talbi et al. [20] and Puchinger and
Raidl [18]. Labadie et al. [10] introduced a hybridization of a Greedy Randomized
Adaptive Search Procedure (GRASP) and an Evolutionary Local Search algorithm
(ELS) for the TOPTW. Different constructive heuristics based on GRASP are pro-
posed in order to build the initial solutions. Those initial solutions are further im-
proved by the ELS algorithm. Another hybrid algorithm which is based a local search
(LS) procedure, Simulated Annealing (SA) and Route Combination (RR) component
is proposed by Hu and Lim [7]. Three components are iteratively incorporated within
a certain number of iterations. It is shown that 35 new best solutions are found and
more than 83% of instances with optimal solutions can be obtained.

Most recently, Cura [1] proposed an Artificial Bee Colony (ABC) algorithm to
solve the TOPTW. Hybridization of SA and a new scout bee search behavior based on
a local search procedure is introduced to improve the solution quality of benchmark
instances. The proposed method is able to produce high-quality TOPTW solutions
and comparable to other approaches. There is no new best found solution reported.

3 Hybrid Algorithm

In this section, we describe the proposed algorithm that combines Simulated Anneal-
ing (SA) and Iterated Local Search (ILS), namely SAILS. Instead of starting with
a randomly generated initial solution which is commonly used in SA, we introduce
a greedy construction heuristic for providing an initial solution. The initial solution
is further improved by SAILS. By using SA, a new solution with a worse objective

Aldy Gunawan et al.

Algorithm 1 CONSTRUCTION (N, M)

N* <—node 0
N’ <+ N\node 0
Initialize Sy <+ N*
F < UPDATEF(N', M)
while F # 0 do
(n*, p*, m*) < SELECT(F)
So « (n*,p*,m*)
Update P(m)
N« N\ {n*}
N* < N*U{n*}
F + UPDATEF(N', M)
end while
return Sy

Algorithm 2 UPDATEF (N', M)

F<+0
for alln € N' do
for all m € M do
for all p € P(m) do
if insert node # in position p of path m is feasible then
calculate ratiop, pm
F < FU{n,p,m)
end if
end for
end for
end for
Sort all elements of F in descending order based on ratio,, pm
Select the best f elements of F and remove the rest
return F'

function value may be accepted with a certain probability. The possible neighbor-
hoods are generated by implementing ILS. The details of the SAILS algorithm are
described in the following sub-sections.

3.1 Greedy Construction Heuristic

The greedy construction heuristic is outlined in Algorithm 1. The idea of gen-
erating an initial solution is adopted from the one proposed by Gunawan et al. [6].
The earlier version is only dedicated for |M| = 1. Here, the heuristic is extended for
|M| > 1. N’ and N* denote the sets of unscheduled and scheduled nodes, respectively
(N'UN* = N). N* is initialized by the start and end nodes, node 0, while N’ con-
sists of all unscheduled nodes. Sy refers the current feasible solution obtained so far,
represented as m-row vectors. Each row is initialized with start and end nodes, node
0.

The construction heuristic is started by generating a set of all feasible candidate
nodes to be inserted, F. Each element of F, which represents a feasible insertion of
node 7 in position p of path m, is represented as (n, p,m). All possibilities of inserting
an unscheduled node in position p of path m are examined. A insertion (n, p,m) is

SAILS: Hybrid Algorithm for the Team Orienteering Problem with Time Windows

Algorithm 3 SELECT (F)

SumRatio < 0
for all (n,p,m) € F do
SumRatio < SumRatio + ratioy, p m
end for
for all (n,p,m) € F do
Proby .y < ratio, p m /SumRatio
end for
U < rand(0,1)
AccumProb < 0
for all (n, p,m) € F do
AccumProb < AccumProb + proby, p
if U < AccumProb then
(", p* m) < (n, p,m)
break
end if
end for
return (n*, p*,m*)

feasible if after the insertion, all scheduled nodes do not violate their respective time
windows and the total spent time of path m does not exceed 7.

Let P(m) be a set of positions of scheduled nodes on path m. For each possible
insertion, the benefit of insertion ratio, p, is calculated by equation 1. Diff, ,m
represents the difference between the total time spent before and after the insertion of
node n in position p of path m. All elements of F are then sorted in descending order
based on ratio, p, values. Only a subset of elements, f, would be kept. Algorithm 2
summarizes the algorithm of generating F.

u2
ti n,p,m — 7n 1
ratio,p, (lefn1p7m> (D

If F is not an empty set, Algorithm 3 is run in order to select which (n*, p*, m*)
to be inserted. Each (n, p, m) corresponds to a particular probability value, prob, , m.
The probability is calculated by Equation 2:

ratioy p.m
probypm = | o——"F— 2)
Y(ijk)eF ratio; j i

The selection of (n*, p*, m*) from F is based on Roulette-Wheel selection con-
cept [4]. This method assumes that the probability of selection is proportional to the
benefit of insertion of an individual, ratio, p ,,. The accumulative of probability val-
ues, AccumProb, is initially set to 0. A random number U ~ rand|[0, 1] is generated.
We then select a particular (n*, p*, m*) and update the value of AccumProb iterative-
ly. This loop will be terminated when (U < AccumProb) and the corresponding (n*,
p*, m*) is then selected. Sp, N’ and N* will also be updated. The greedy construction
heuristic is terminated when F = 0.

Aldy Gunawan et al.

3.2 SAILS

Given the initial solution generated from the greedy construction heuristic, we pro-
pose a hybridization between Simulated Annealing (SA) and Iterated Local Search
(ILS) to further improve the quality of the initial solution. The outline of SAILS is
presented in Algorithm 4. The SA algorithm requires three parameters Ty, o and IN-
NERLOOP. Tj refer to the initial temperature. o is a coefficient used to control the
speed of the cooling schedule. INNERLOOP denotes the number of iterations at a
particular temperature.

Let So, S* and ' be the current solution, the best found solution so far and the
starting solution for each iteration, respectively. At the beginning, the current temper-
ature Temp is equal to Ty and will be decreased after INNERLOOP iterations by using
the following formula: Temp = Temp x o (0 < o0 < 1).

At a particular value of temperature, we apply two components of ILS: PER-
TURBATION and LOCALSEARCH in order to explore neighborhoods of Sy. For each
iteration, we calculate the difference between two solutions Sy and ', denoted as 9.
If 8 is greater than 0, which implies that the improvement of the objective function
does exist, ' is replaced by Sy. If Sy also improves S*, $* is then replaced by Sp. On
the other hand, if the solution generated is worse, a random number between 0 and
1, r, is generated and compared with exp(8/Temp). If this worse solution is accepted
(r < exp(8/Temp)), we update S’; otherwise, we return to §’. For each iteration, if
there is no improvement of S*, we increase the number of no improvement NOIMPR
by one. In [21], the solution will only be accepted if it is better than the best found,
otherwise the number of non-improvement iteration will be increased by one.

The main difference of the standard SA and our SAILS lies in the additional
strategy applied. We include the intensification strategy. The idea of this strategy is
as follows. If there is no improvement of the solution obtained after a certain number
of iterations LIMIT, we focus the search once again starting from the best solution
obtained S*. Finally, the entire algorithm will be run within the computational budget
TIMELIMIT.

The neighborhoods of the current solution is generated by ILS. Two components
of ILS are considered: PERTURBATION and LOCALSEARCH. Two different steps im-
plemented in PERTURBATION are: EXCHANGEPATH and SHAKE. If the number of
iterations without improvement, NOIMPR, is larger than THRESHOLD1 and (NOIM-
PR + 1) Mod THRESHOLD2 = 0, EXCHANGEPATH would be executed; otherwise,
SHAKE would be selected. THRESHOLD1 and THRESHOLD2 are two pre-set pa-
rameters. In EXCHANGEPATH step, all nodes from two different paths are selected
and swapped. The strategy of selecting two different paths are based on generating
of permutations by adjacent transposition method [8]. EXCHANGEPATH will only
be implemented if the number of paths is more than one. Otherwise, we implement
SHAKE.

The SHAKE step is adopted from [21]. One or more nodes will be removed from
each path m, which depends on two integer values, CONS and POST. CONS indicates
how many consecutive nodes to remove for a particular path while POST indicates
the first position of the removing process on a particular path. If we reach the last
scheduled node, the process will then be back to the first node after the start node,

SAILS: Hybrid Algorithm for the Team Orienteering Problem with Time Windows

Algorithm 4 SAILS (N, M)

So < CONSTRUCTION(N, M)
§* 8o
S So
Temp < Tp
NOIMPR + 0
while TIMELIMIT has not been reached do
INNERLOOP = 0
WHILE INNERLOOP < MAXINNERLOOP DO
So < PERTURBATION(Sy, N*,N', M)
So <~ LOCALSEARCH(Sy,N*,N', M)
d+Sy—8
IF & > 0 THEN
S — S
IF Sp IS BETTER THAN S* THEN
S* < So
NOIMPR + 0
ELSE
NOIMPR <~ NOIMPR + 1
END IF
ELSE
r < rand|0,1]
IF r < exp(8/Temp) THEN
S S()
ELSE
Sp 8
END IF
NOIMPR <~ NOIMPR + 1
END IF
INNERLOOP <— INNERLOOP + 1
END WHILE
Temp < Temp X O
IF NOIMPR > LIMIT THEN
So S*
S« So
NOIMPR + 0
END IF
end while
return S*

node 0. Both CONS and POST are initially set to 1. After each SHAKE step, POST
is increased by CONS. CONS would also be increased by 1 after a fixed number of
consecutive iterations, e.g. 2 iterations.

If POST is greater than the size of the smallest path, POST is subtracted with the
size of the smallest path to determine the new position POST. If CONS is greater than
the size of the largest path, or S* is updated, CONS is reset to one. Take note that
CONS is always increased by 1 for each iteration and would be set to 1 if it equals
to 3%\/"1\ in [21]. After removing CONS nodes, we update N’ and N* accordingly. F
is then regenerated based on Algorithm 2 and an unscheduled node that needs to be
inserted is selected using Algorithm 3. This is repeated until F = 0.

Table 1 presents six operations in LOCALSEARCH that are run consecutively and
applied to So. When m = 1, only SWAPI, 2-OPT, INSERT and REPLACE are con-

Aldy Gunawan et al.

Table 1: LOCAL SEARCH operations.

Operations Descriptions

SWAPI1 Exchange two nodes within one path

SWAP2 Exchange two nodes within two paths

2-OPT Reorder the sequence of certain nodes within one path
MOVE Move one node from one path to another path

INSERT Insert nodes into a path
REPLACE Replace one scheduled node with one unscheduled node

sidered. SWAP1 is applied by exchanging two scheduled nodes within one particular
path with the lowest remaining travel time. We examine all possible combinations
of selecting two different nodes. SWAPI is executed if it is able to increase the re-
maining travel time of selected path and there is no constraint violation. The idea
of SWAPI is extended to two different paths with the lowest and the second lowest
remaining travel times, namely SWAP2. This operation will be accepted if the total
remaining travel times from both paths is increased. Both SWAP1 and SWAP2 would
be terminated when there is no further improvement in terms of the remaining travel
times.

2-0PT is started by selecting one path with the lowest remaining travel time. All
possible combinations of selecting two different nodes are enumerated and the se-
quence of scheduled nodes is reversed as long as there is no constraint violation. It
has to increase the remaining travel time of the selected path. This would be termi-
nated until no further improvement in terms of the total of remaining travel time of
the selected path.

MOVE is performed by reallocating one node from one path to another path. It is
started from the first scheduled node n* from first path m*. We try to insert node n*
in another path. First, F is generated by using Algorithm 2 where N’ = {n*} and M =
M\ {m*}.If F # 0, node n* would be reallocated using Algorithm 3. Otherwise, the
process will continue to the next scheduled node. This operation would be terminated
if node n* is moved successfully or the last scheduled node of the last path |M] is
reached.

The purpose of INSERT is to insert one unscheduled node to a particular path. It is
started by generating F based on Algorithm 2 and selecting node i € N’ to be inserted
by using Algorithm 3. After the insertion, Sy, N', N* and F are updated accordingly.
This is repeated until F = (. In the last operation REPLACE, one scheduled node
i € N* is replaced with one unscheduled node j € N’. The operation is started by
selecting path m with the highest remaining travel time, followed by selecting one
node j € N' with the highest score u;. We then check each position p of the selected
path and examine whether selected node j can replace the node in position p. Once
this operation is successful, the process will continue to the next unscheduled node j
and repeat the operation. Otherwise, the operation would be terminated.

SAILS: Hybrid Algorithm for the Team Orienteering Problem with Time Windows

Table 2: Benchmark Instances

References ~ Names Instance Sets IN| M|
[19] Solomon ¢100, r100, rc100 100 l1to4d
Cordeau prO1 - pr10 [48, 288]
[16] Solomon ¢200, 1200, rc200 100 1to4
Cordeau prll - pr20 [48, 288]
[21] Solomon ¢100, r100, rc100 100
¢200, r200, rc200 100 up to number of vehicles
Cordeau prO1 - pr10 [48, 288]

Table 3: Estimation of single-thread performance

Algorithm Experimental environment Estimate of single-thread performance
TterILS Intel Core 2 with 2.5 GHz processor 0.92

ACS Dual AMD Opteron 250 2.4 gigahertz CPU, 4 gigabytes RAM 0.39

SSA Intel Core 2 CPU, 2.5 gigahertz 0.92

GVNS Intel Pentium (R) IV, 3 gigahertz CPU 0.39

I3CH Intel Xeon E5430 CPU clocked at 2.66 gigahertz, 8 gigabytes RAM 1.16

SAILS Intel(R) Core(TM) i5 CPU with 3.2 GHz processor, 12 GB RAM 1

4 Computational Results
4.1 Benchmark Instances and Approach Comparison

The benchmark instances are categorized into three groups, as listed in Table 2. All
benchmark instances can be accessed at http: //www.mech.kuleuven.be/en/cib/
op. The first two groups are considered as "INST-M” which contain four instance
sets: ”’Solomon 1007, ”Solomon 2007, ”Cordeau 1-10” and ”Cordeau 11-20”. The
last group is known as "OPT”. The optimal solution for each instance in this group is
known as the total score of all nodes on the network graph [7].

The performances of SAILS are compared against the state-of-the-art algorithms:
Iterated Local Search (IterILS) [21], Ant Colony System (ACS) [16, 17], Slow Sim-
ulated Annealing (SSA) [13], Granular Variable Neighborhood Search (GVNS) [11]
and Iterative Three-Component Heuristic (I3CH) [7]. In order to ensure the fairness
among algorithms, we also follow the same approach by using the SuperPi bench-
mark [7] to adjust the computational time to the speed of the computers used in
other solutions. The main idea is to set the performance of our machine to be 1 and
estimate the single-thread performance of other processors by multiplying with the
single-thread performance estimation, as shown in Table 3.

We propose two different scenarios for running SAILS. In the first scenario, we
refer to the computational time used by ACS since we are more concerned about the
quality of the solution rather than the solution time. Only ACS uses the computational
budget, while the rest use the number of iterations. Our experiments use 35% of
ACS’s computational budget (= 3600 seconds). Therefore, the computational budget
for each instance is set to 35% x 0.39 x 3600 seconds ~ 492 seconds using our

Aldy Gunawan et al.

Table 4: New best known solution values found by SAILS (first scenario)

Instance m OldBK NewBK Instance m Old BK New BK
1206 1 1029 1032 prl8 2 938 946
1208 1 1112 1115 r104 3 777 778
rc206 1 895 899% rcl04 3 834 835
r107 2 536 538 pr02 3 942 943
pro4 2 925 926 rl04 4 972 973
pr09 2 905 909 rcl03 4 974 975
c204 2 1480 1490 rcl07 4 980 985
prl3 2 832 843

* Same result with that of ILS [6]

processor (refer to Table 3). In the second scenario, we conduct experiments in which
SAILS is set to the same computational time of I3CH. It has been proven that I3CH
outperforms other algorithms, such as IterILS, SSA and GVNS [7].

For SAILS, each instance is executed in 10 runs with different random seeds.
ACS was executed in 5 runs whereas GVNS was also executed 10 runs. IterILS, SSA
and I3CH were only executed once and reported one solution for each instance. Some
parameter settings adopted from [6] are as follows: f =5, THRESHOLDI = 20 and
THRESHOLD?2 = 3. Other SA parameters have been selected according to preliminary
experiments using a subset of instances. The values of parameters considered are as
follows: o € {0.5,0.75,0.9}, Temp € {500, 1000, 1500,2000} and MAXINNERLOOP
€ {50,100}. Only one parameter is set to a constant value, using the formula: LIMIT
= 0.05 x MAXINNERLOOP. All possible combinations were run in order to obtain
the final parameter values: o = 0.75, Tp = 1000 and MAXINNERLOOP = 50.

4.2 Computational Results

We report a comprehensive analysis of the results obtained by SAILS. Table 4 presents
15 new best known solutions (BKs) obtained by SAILS, 40% of them are from in-
stances with m = 2 while each of other m values has 20% of new BKs. Around 33% of
new BKs are from Cordeau et al.’s datasets which is harder to solve compared against
Solomon’s datasets [2]. We only report the results of Cordeau et al.’s datasets for m =
1 to 4 due to space constraints, as shown in Tables 5-8. The complete results is avail-
able at http://centres.smu.edu.sg/larc/Orienteering-Problem-Library.

Tables 5 - 8 consist of two identical structure parts. The first column shows the
instance name. The second column contains the best known solution value BK from
one of the state-of-the-art algorithms: IterILS, ACS, SSA, GVNS and I3CH. The
following three columns present maximum, average and minimum solution values
obtained by SAILS from 10 runs. The ”BG (%)” column refers to the percentage gap
between BK and the maximum (best) solution obtained by a particular algorithm. AG
(%)” provides the percentage gap between BK and the average solution obtained by a
particular algorithm. The last three columns show maximum, average and minimum
computational times (in seconds) required to obtain the best found within the given
computational time. The new BK are highlighted in bold.

‘Windows

ime

Problem with T

ing

Hybrid Algorithm for the Team Orienteer

SAILS

Y81 vvIe vesyr 8ty vT 1Tl LTLIT €0TI TETl ozd 91L eTET OvTk 8 91 #HOL 9FLOT IIIT 6TII orxd
6's€l 11T 68 6€ 'l 956 6'€66 €201 $€01 61id e pTEl 0€Sy 61 ¥O0- 198 7888 606 S06 604d
6'¢E 00Tz Se6syr ST 60 606 €Y6 96 8€6 grid 661 TTWT 0SSy ST S0 608 L'178 0£8 PEs g0ad
Sel 98Cl 916C TI 60 €¥9 SP9 99 79 Ld o Ts 706 6TLE 00 00 99§ 99¢ 996 99¢ Lod
€I€l 8S9C T90r 08 L9 LOIT LTEIT 6VIT 1€TI ord L6 0€0E €T8 0S 6T €66 TTOl SKOI 9L01 90xd
9661 TeEE 1Ok 9¢ T OEIl 9SLIT 90Tl 61Tl srd gL ¢8IT LTSE 6T 80 80l L8901 T6OI 1011 coud
7’88 vSLT vk 1S 0€ vt6 ¥'S9%6 986 L101 viid 9pz ¢8IT OIer LT 10~ 868 ¥606 976 ST6 poud
88y LYLl S9LF 90 €1~ 118 8978 €8 T€8 crd 696 LTST ¥LEY €1 00 OIL €TEL L L goud
€97 YOEl v09C 1T 01 EpL 8LSL 9L YLL cid 981 99¢1 ¥ISK 8T v0 €69 810L TIL SIL zod
EXY I'se I'sel +0 00 6SS S€9S 99§ 996 d 7z €T S16 00 00 20§ 208 0S 08 10d
ury LN XeWw (%) (%) _UN__ Say XeN uN_ Say XeN (%) (%) _WN__ Say XeN
s, ov og STIVS ad sourysug s, oy o4 STIVS VE sour)suy
7 = W JIIM SQDUBISUL S, Tk 19 NBIPIOD) U0 SIS JO SIMNSAI PI[IeId(] :9 J[qel,
I'sh O1SI §9S€ L¥ 8T LT9 SSE9 89 L99 ocd g0 T80T TO6F LT 61 €95 L'LLS €8S 16§ orxd
't TISI €L6€ 8T +0 9§ 1'9¥S 095 79§ 61d 6¢ 8°0L 8¢S TO 00 06y 8l6v €6v €67 601d
€€l 68 606¢ TO 00 €€5 8¢S 6£S 6£S grd 97 101 90¢ 00 00 €9 €9 €9y £9¢ g0d
8L OLE Y¥L 00 00 T9E T9€E 9¢ T9¢ Ld 10 S'¢ 6°€l 00 00 86T 86T 86T 86 Lond
TPy TSEl €79 9S 9¢ 179 9¢9 0S9 L9 ord ¢yl 006 $T9¢ ¥v 0T €SS S9§ 6LS 166 90d
9TS 89SI T66C 6T 00 T99 ¥989 LOL LOL sid gpe c681 918y L0 SO 065 I'l6S TES S6S c0ad
T9C I8¢l $80F 8E€ 9T SIS TSKS TS L9S prd - Tor go0cl oStk €1 00 1Ly 8T8F 68F 68F youd
LLT €TST §L0v TT LTSSy 6SSt 8SF 99% crd 40 L'81 Lo 00 00 ¥6E v6E v6E 6€ coud
T9 T8 618 S0 TO 65 Obb vy zid g9 pey 80T 00 00 OF POb Yoy O zoud
901 Lvel €T 00 00 €S€ €SE €6¢ €8¢ md 00 ¥e Ls 00 00 80¢ 80€ 80¢ S0€ 104d
N 3AY XeN (%) (%) _WN__ 3ay XN UIN __ 3AV XN (%) (%) _UIN 3y XeAl
oun ov g STIVS I souesup oy ov g STIVS I souesup

[= W JIM SOOURISUI S, [J@ NBIPIO)) UO SIS JO SINSAI PafreIa(q :S 9qel.

Aldy Gunawan et al.

VIS8T L'68€ ¥6Sk TS L0 €061 9S6l L¥OT TI0T ozid ¢991 0see 616 SS %€ TOST 9°SE81 6981 €61 orxd
80ST 6SLE 194 TY LT 8€91 TLLOT ITLL OSLI 61dd T'691 vILE TL9Y 8T 8T 9ISI 90PSI €LST 6191 604d
S8 819 ¥'€9¥ TP ST 0SPl 6bLPL 10SI 6€SI grd 099 6'L7C LTy S€ vT 9lEl 9'€eel 6VEl T8El g0ad
1l SoIC €88 91 0 906 98I6 0£6 V€6 Ld 9y T TLLY 8T 80 T8 098 698 9.8 Lod
I'LET vT8E 018y €L S LL8T 8vI6l Sk6l S90T ord oovl TSTE 9ISy IS vE€ 6CLl 8'S9LT 96LI 0981 904d
9¥9T 068 9S6F 89 ¥S L981 FTEl €561 S90T sid p091 6826 8E€SF 9 S€ 6891 €SELT PLLT 8€81 coud
8091 €LTE LT6F %€ 90 ¥9ST §9091 0991 OL9I yrd o rgg 6TCC SEPyr Tv 9T pLbl S8IST €¥SI S8SI youd
809 L'8L1 €86¢ 6€ L1 S8T1 PTEEl €9€1 98¢l crd 96 TS81 L6k €€ €0 LSIT L16Il 8TTl TETl goud
9(Y4 8pLl 8L9% LT 8T €801 60011 TIIl TEIL cd o eel 60L1 9Ly 0T 01 I¥O1 €LSOT 8901 6L01 coud
€0 €y 0L 00 00 LS9 LS9 LS9 LS9 d oc 6'8 I'ss 00 00 LS9 LS9 LS9 LS9 10d
LU Say XeW (%) (%) _UIN___ BAY XeN uriy 3ay XeW (%) (%) _uN__ 3ay XeN

outr [oV o9 STIVS e souejsuf ot ov og STIVS VE sour)suy

= W YIIM SQDUBISUL S, Tk 19 NBIPIOD) U0 STIIVS JO SINSAI PI[IeId(] g J[qel,

LLIT TEEE STy ST 0T SLST 68091 1S91 1891 ozd ggL I'€€C 9¥8€ €S €T 8pPl 06YI LEST €LST orxd
TLEL I¥PE 688F Lt TE€ 1IEl $O0SEl TLEL LI¥I 611d 069 1'09¢ 0T6v 6€ vT €0Tl €STTl vhel SLTI 601d
9LL TYET tL6E Ot vT T0Tl +0€Cl 0STl I8TI grid g¢e 9LeT ISP 8T €1 T8Ol ¥LOIL vTIT 6Ell g0d
Sel 676 SIee 91 L0 LIS v'LT8 €8 18 Ld g 'St 9Ty 01 v0 TEL TIEL WL L Lond
0TSt L'SLE STLY 89 9S TEST SYSSI ¥LST 8991 ord ¢9er 0'sTE vTek 9S 9T T6El 98THI PLvI bISI 90ud
LY9T 980F 08y TE 0T 8LST S009I IT91 ¥S91 sid TPl T0SE TO6F TE 91 vIPL €vERl 6SPL T8YI c0ad
8Erl 968C 8SF 0¥ €T veTl TLIEL I¥El TLEI vrd 9L LT8 999% 9T 01 €vTl 86STI 18Tl 6Tl youd
8Fr 96ST S09¢ €T 'l S80Il T'6IIT TEIl SpIl erd et €L81 ¥6Ty 81 90 TL6 €766 001 0101 coud
8'¢e T8IT tYSk 9T 60 656 +9L6 £66 2001 td o Tse Iovc 6.8 01 100 026 +T€6 €b6 T¥6 zoud
S €LS 95T €0 00 6v9 1789 ¥S9 ¥S9 1d 97 966 0066 TI SO 909 SPI19 619 709 104d
UIN Say XeN (%) (%) _WN ___ Say XeN L7 Say XN (%) (%) _UN ___ Say XeN

ouir] ov g STIVS I umsup oun ov g STIVS I usur

€ = W Y)IM SOOURISUL S, T8 39 NBIPIO) U0 STIIVS JO SINSAI Pa[reIa(d :L 9[qel.

‘Windows

ime

Problem with T

ing

Hybrid Algorithm for the Team Orienteer

SAILS

(Spuooas ur) punoj 1s3q Y} urejqo 0y awn revoneindwos oferoay .

I'vC1 120! 8€¢ET 690 8¢ YL I8 601 (878 €€ 8T 0S¢ UBIJN pueID
¥'69C L6'E 9LYS S¥0 868 18°C 1'9z S6¢ TL66 €9 9Tl LY'S 01 oc-111d
€vee 8S'€ 0659 9¢0 ey 091 0'S€C €TT 9'996 we o€l 80°L 01 01-101d
€LT 000 [40] 000 €0 100 6'9¢ 000 9'6%C 10°0 01 000 8 00gd1
60T 000 (40 000 10 000 $9¢ 000 881 000 80 000 1 00Tt
1321 000 10 000 0 000 ¥'8€ 000 0¢ L00 60 000 8 0022
6°L01 080 CLLT €70 44! 6L'1 979 LEO €959 81'C 81 8I'¢ 8 00101
LLIT ov'l ¥yic 910 LTE 8T'C Les €L°0 €189 61 ¥ 1e'¢ 1 0011
0801 8¢l SH0E 010 ¥1S €9'1 (387 Ss0 89Ly LT1 T e 6 0010
? =u
60ST 6£°€ I'8LS 111 T8¢ 081 (SR TN £ L'L66 YTL 68 616 01 og-111d
0LET S8T Teer 9€0 4% €r'l 18T +€¢C 6818 [kay S8 859 01 o1-101d
6C8 0’0 8061 ¥00 6T ¥'0 479 LTO 8'88¢ 760 91 'l 8 00721
¥'86 €10 960l 100 L't 0T'0 9'8¢ 800 €Sy 20 €1 0€'0 8 00Tt
151 980 €yl 000 0¢ 610 6'7S Tl L'60S €9'1 0c €61 8 0022
099 840 YLIT LTO o€l €T €6¢ ¥9°0 L'8SY LOT 01 1K 8 00121
0801 LSO 9LET 170 (14 LTT (1Y 6€°0 9189 0g'l 91 6L'1 4 001X
LSL 050 €1ce 110 L€9 S6°0 L&43 €€°0 Loy 6L°0 ¥l [S94 6 0012
m =
6'81C e €¥sE 0L'T 81¢ 81'C 7’681 88°¢ $0T6 S19 8y 98'L 01 oc-111d
6981 60'C ¥'L8C 111 1'S1 6L'1 6651 SPT ¥'6TL LS'€E 147 79 01 01-101d
1'eec 96'1 STIS 790 6F LS'T 9¢L STl €106 €8¢ 0c 1284 8 00721
oLc se'l 6CI9 170 LS 0€'l 0v8 850 8601 ILE 1 ¥L'T 1 00g!
i 74! 060 L99% 890 o€l 850 €6¥ 8I'l L6€S 181 43 ¥S'C 8 002
¥'09 LT°0 $'89 060 8L 08'C TLE 61°0 1'%0S LT 90 LY'T 8 00101
Les 80°0 €eL 850 (X4 08’1 Lee €T0 TTEs SS0 80 9¢€'T 1! 0011
861 €00 Tl 000 6'¢S Lo [74 000 6'60€ 10 01 ¥6'0 6 0012
N =u
€8Il 8T'C SIST 8T €6 9T corl ILE 9'The L8'TT 81 956 01 oz-111d
LSL €6°0 8971 LO'T 8 w91 TE0l 860 6,79 Tl L1 YLy 01 or-101d
8'8S1 0’1 8'8€l 89T 79 96'€ (44 960 7'96S ¥0'C Sl £r'e 8 00721
9'18C SO'1 60T SO'1 1'el 8¢'¢ ey o€l 6009 L€ 91 06T 8 00Tt
€89 ¥1°0 7'86 or'o €YL i (S 743 €10 el 850 91 8T'C 8 0022
8y 900 L'6T 99'1 8¢ IS¢ ¥'0C 000 %99 000 0 06T 8 00121
6 000 €ee 950 Lan! 89'C [SF4 110 0871 20 40 061 4 001X
01 000 €6¢ 000 €19 w1 7’61 000 ¥ 000 €0 11 6 0012
~ =
Qul (p oy aunl (p)og uil (%)ov aunl (%)Dd 2wl (p)oy auip (%) DG o 108
STIVS HOEI SNAD VSS SOV ST TN souersur

soouR)Sul JN-LSNI.. U0 SWPLIOS[E 11e-973-J0-9)8)s oY} 0} STIV'S Jo uostredwio)) , a8eI10Ay,, [[BIOAQ 16 9[qBL

Aldy Gunawan et al.

Table 10: Overall "Best” Comparison of SAILS to the state-of-the-art algorithms on
”INST-M” instances

IterILS ACS SSA GVNS 13CH SAILS
Instance Set Numb —— — — — — —
BG (%) BG (%) BG(%) BG (%) BG (%) BG (%)
m=1
c100 9 1.11 0.00 0.00 0.56 0.00 0.00
r100 12 1.90 0.00 0.11 1.72 0.56 0.00
rc100 8 2.92 0.00 0.00 1.88 1.66 0.00
c200 8 2.28 0.40 0.13 0.55 0.40 0.00
r200 11 2.90 2.19 1.30 2.45 1.05 0.13
rc200 8 343 1.23 0.96 2.53 2.68 0.23
prO01-10 10 4.74 1.06 0.98 0.56 1.07 0.44
pr11-20 10 9.56 11.13 3.71 3.17 4.28 1.14
m=2
c100 9 0.94 0.00 0.00 0.47 0.00 0.00
r100 12 2.36 0.20 0.23 1.19 0.58 -0.03
rc100 8 2.47 0.33 0.19 0.78 0.90 0.00
c200 8 2.54 1.27 1.18 0.25 0.68 0.25
1200 11 2.74 3.16 0.58 0.67 0.21 0.46
rc200 8 4.14 2.70 1.25 1.68 0.62 0.68
pr01-10 10 6.22 2.59 2.45 0.82 1.11 0.56
prl11-20 10 7.86 5.00 3.88 1.21 2.70 1.40
m=3
c100 9 2.55 0.22 0.33 0.45 0.11 0.11
r100 12 1.79 0.36 0.39 1.22 0.21 0.11
rc100 8 3.14 0.35 0.64 0.91 0.27 -0.01
c200 8 1.93 1.10 1.24 0.07 0.00 0.35
r200 11 0.30 0.13 0.08 0.11 0.01 0.04
rc200 8 1.44 0.42 0.27 0.32 0.04 0.13
prO1-10 10 6.58 2.96 2.34 0.36 0.36 1.26
pr11-20 10 9.19 5.40 3.81 1.02 1.11 2.02
m=4
c100 9 3.11 0.36 0.55 1.04 0.10 0.38
r100 12 3.31 0.78 0.73 1.22 0.16 0.39
rc100 8 3.18 0.78 0.37 0.95 0.23 -0.01
c200 8 0.00 0.00 0.00 0.00 0.00 0.00
1200 11 0.00 0.00 0.00 0.00 0.00 0.00
rc200 8 0.00 0.00 0.00 0.00 0.00 0.00
pr01-10 10 7.08 2.76 2.23 1.08 0.36 2.08
prl11-20 10 8.47 5.53 3.95 2.05 0.45 2.05
Grand Mean 3.50 1.69 1.09 1.00 0.69 0.46

SAILS: Hybrid Algorithm for the Team Orienteering Problem with Time Windows

[9] ST JO eY) YIIM J[NSAT QWL 4

L6 IL6 14 CITT 48€6 9¢6 I 01
S8¢l P8¢l [4 10221 ¥L01 CLOl I LOT!

YgMON YgPIO W 0UMSU[ygMON YFPIO # ouwsU]
(O1IBUQOS Pu0das) SIVS AQ PUNOJ sen[eA UOTIN[OS UMOUY 1S9q MAN] 7] [qeL

(Spu0d3s UI) punoy 183q AY) Ure3qo 03 dwp [euoneINdwod dFLINAY

€orl SLO 0v'0 veIe S0 '8 vL0 LEET S¥0 19 0g'1 BN pueID
109z €51 wl 008€ 8L0 g6l STl €07 Y01 08T €T) o11d-101d
0SL 010 L0°0 TITC 00 'l 910 08¢ L00 97 Lv0 8 0021
9991 TTO 100 L10T L00 1C LT'0 9¢s 910 Sl 790 1 00
861 000 000 Lo 000 T0 000 $8¢ 000 01 000 8 0022
Ut Irl S0 L'99 000 TSI 6T §LL SE0 c€ 90T 8 00101
L€0T SI'T S0 01201 L0°0 €61 ST 796 TW0 LT €6'1 z 0014
9¢6 LS80 €50 68 000 0¢ Lv0 YIL BO'T 8T I 6 0012
UL (%)DY (%)Dd owil (%)Dg Wil (%)DV owll (%)Dd ouiL (%)Dd

= - quinn 19§ duB)ISUL

STIVS HOEI SNAD vSS ST

sooue)sul J.dO.. U0 SPOYIoW 1Ie-a}-J0-93e1s 9y} 0} STIV'S Jo uostredwro) :11 9[qe,

Aldy Gunawan et al.

Tables 9 reports the average of AG (AG (%)) and the average computational time
(in seconds) (Time) for each instance set of ZINST-M”. Since IterILS, SSA and I3CH
were only run once, we also include their average of BG (BG (%)) although we cannot
directly compare with AG (%). The num column provides the number of instances in
a particular instance set. The values of Time for ACS and SAILS refer to the average
of computational time (in seconds) in order to obtain the best found from all runs.
On the other hand, the ones for IterILS, SSA, GVNS and I3CH refer to the average
of computational time (in seconds) for solving one particular instance set. All values
reported have been adjusted according to the computer’s speed as listed in Table 3.

In general, SAILS is competitive with the state-of-the-art algorithms. IterILS is an
algorithm with the main purpose of providing good solutions very quickly, whereas
SAILS focuses on finding better solutions at the cost of larger computational times.
SAILS outperforms ACS in terms of the computational time and the solution quality.
ACS requires 1 hour (= 1404 seconds using our PC) while SAILS only requires 492
seconds for solving one instance. The Grand Mean of Time of SAILS is around 23%
of ACS’s Grand Mean. In terms of the solution quality, SAILS is able to reduce the
Grand Mean of AG up to 48.9%. SAILS also outperforms GVNS in terms of the
solution quality. The AG’s Grand Mean of SAILS and GVNS are 1.14% and 1.74%,
respectively although SAILS spends more computational time compared against that
of GVNS.

Tables 10 summarizes the comparison among algorithms in terms of the values of
BG. All algorithms except IterILS are able to provide the Grand Mean of BG below
1.7%. SAILS is the best compared against other algorithms where the grand Mean
of BG is only 0.46%. It also has a narrow range of -0.03% to 2.08%. Three instance
sets give negative values, meaning that SAILS achieves some improvements of some
BKs in those instance sets. Two of them are from rc100 instance sets with m = 3 and
4. Table 11 reports the results obtained on "OPT” instances [21]. SAILS outperforms
other algorithms, except I3CH in terms of the Grand Mean of BG. SAILS provides
better results with greater computational time. The Grand Mean values of AG for
GVNS and SAILS are 0.74% and 0.75%, respectively. Thus, we can conclude that
SAILS provides the trade-off between the solution quality and computational time,
on average.

At first glance, SAILS requires more computational time compared against those
of other algorithms except ACS. Therefore, we implement the following second s-
cenario. Additional experiments were done by setting the computational time as the
one of I3CH. It has been shown that I3CH outperforms other approaches when us-
ing the same computational time [7]. We encountered four additional new BKs, as
shown in Table 12. The results of using the same computational time are presented in
Tables 13 and 14. We observed that SAILS overall average performance in terms of
AG is 0.12% better than that of I3CH. I3CH has a wider range for BG values. SAILS
and I3CH ranges from -0.01% to 3.18% and from 0.00% to 4.28%, respectively. For
”OPT” instances, I3CH performs best with the lowest Grand Mean of BG. The value
is only 0.15%. The computational time using I3CH is less than the one used in the
first scenario, except for r100 instance set.

Table 15 summarizes the percentage improvement of the solution quality (in av-
erage) for all instance sets. In general, we can conclude that SAILS is able to improve

SAILS: Hybrid Algorithm for the Team Orienteering Problem with Time Windows

Table 13: Comparison with the same computational time on "INST-M” instances

m Instance Set ECH — SAILi Time
BG(%) BG(%) AG(%) (seconds)

1 cl00 0.00 0.00 0.00 29.3
r100 0.56 0.00 0.03 33.3
rc100 1.66 0.00 0.10 29.7
200 0.40 0.00 0.32 98.8
1200 1.05 0.33 1.36 207.5
c200 2.68 0.52 1.44 140.1
pr01-10 1.07 0.37 1.02 126.9
pr11-20 428 1.49 3.13 152.0

2 cloo 0.00 0.00 0.18 101.0
r100 058 -0.01 0.31 73.2
rc100 0.90 0.02 0.32 68.4
€200 0.68 0.25 0.88 466.7
1200 0.21 0.51 1.48 616.0
1c200 0.62 0.51 1.90 512.5
pr01-10 1.11 0.73 1.81 287.2
pr11-20 2.70 1.54 2.96 355.4

3 ¢loo 0.11 0.22 0.77 220.9
100 0.21 0.14 0.70 137.4
rc100 0.27 0.00 0.60 117.2
€200 0.00 3.18 421 16.1
1200 0.01 0.27 0.61 109.8
1c200 0.04 0.52 1.49 192.3
pr01-10 0.36 1.17 2.92 4927
pr11-20 1.11 1.41 3.05 578.8
4 ¢100 0.10 0.58 1.52 303.9
100 0.16 0.43 1.52 214.0
rc100 0.23 0.17 0.99 177.0
€200 0.00 0.00 0.00 14
1200 0.00 0.02 0.13 4.0
1c200 0.00 0.15 0.34 2.1
pr01-10 0.36 1.74 3.72 658.2
pr11-20 0.45 1.92 3.41 847.6
Grand Mean 0.69 0.57 1.36 234.4

the initial solution generated by the Greedy Construction Heuristic. The values range
from 0.30% to 19.41%. SAILS performs best for m = 1 where the percentage of im-
provement is varied from 6.20% to 19.41%. Figure 1 shows the Grand Mean values
obtained in terms of percentage improvement, as shown in Table 15. We observe that
the higher the value of m, the lower the Grand Mean value. It is expected since the
problem is more difficult for higher values of m. "OPT” instance sets are the most
difficult to solve.

Aldy Gunawan et al.

Table 14: Comparison with the same computational time on "OPT” instances

I3CH

SAILS

Instance Set —— — — Time

BG(%) BG(%) AG(%) (seconds)
100 0.00 2.15 2.92 55.6
100 0.07 0.79 1.47 1018.6
1c100 0.00 1.15 1.90 66.8
€200 0.00 0.00 0.00 1.7
1200 0.07 0.31 0.97 204.8
1200 0.04 0.38 0.96 2225
pr01-10 0.78 1.46 1.89 382.1
Grand Mean 0.15 0.90 1.46 320.1

Table 15: The solution quality improvement by SAILS (in %)

“INST-M”

Instance Set ”OPT”
m=1 m=2 m=3 m=4

c100 943 1047 9.45 9.03 5.08
r100 11.13 1330 1475 14.68 6.25
rc100 17.73 1567 15.10 16.04 7.77
200 6.20 6.15 6.71 0.40 0.30
1200 9.09 7.93 2.39 0.32 3.74
rc200 13.41 10.91 5.39 1.18 4.04
pr01-10 18.57 1886 1570 12.80 5.03
prl1-20 19.41 18.63 1426 1143 -
Grand Mean 12.87 1259 10.50 8.17 4.50

g 10

E 8

=

2

&

@

: E

m=1 ‘ m=2 I m=3 ‘ m=4 ‘ "OPT"

Fig. 1: The Grand Mean values for m =1 to 4

5 Conclusion

In this paper, we present a hybridization of Simulated Annealing and Iterated Local
Search, namely SAILS, to solve the TOPTW. The proposed algorithm is run in two
different scenarios. The first scenario is to run SAILS with longer computational time
since we are more concerned with the solution quality. The second scenario is mainly

SAILS: Hybrid Algorithm for the Team Orienteering Problem with Time Windows

tailored for the comparison purpose with the-state-of-the-art algorithms. This is done
by setting the computational times to those of one of the-state-of-the-art algorithms,
I3CH. Both scenarios are applied to benchmark instances.

Computational results show that SAILS is competitive with the-state-of-the-art
algorithms. Simulated Annealing is able to improve the performance of Iterated Local
Search by discovering 19 new best known solutions. Two areas of future work can
be considered. Using different scenarios for building the initial solutions in order
to observe the effect of Simulated Annealing would be one interesting area. And
since the Orienteering Problem and its variants have attracted more attention in recent
years, SAILS may be potentially applied to solve them.

Acknowledgements This research is supported by Singapore National Research Foundation under its
International Research Centre @ Singapore Funding Initiative and administered by the IDM Programme
Office, Media Development Authority (MDA).

References

1. Cura, T.: An artificial bee colony algorithm approach for the team orienteering problem with time
windows. Computers and Industrial Engineering 74, 270-290 (2014)

2. Duque, D., Lozano, L., Medaglia, A.: Solving the orienteering problem with time windows via the
pulse framework. Computers and Operations Research 54, 168—176 (2015)

3. Garcia, A., Arbelaitz, O., Vansteenwegen, P., Souffriau, W., Linaza, M.T.: Hybrid approach for the
public transportation time dependent orienteering problem with time windows. In: E. Corchado,
M. Romay, A. Savio (eds.) Hybrid Artificial Intelligence Systems, Lecture Notes in Computer Science,
vol. 6077, pp. 151-158. Springer, Berlin, Germany (2010)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, Massachusetts (1989)

5. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Research Logistics 34(3), 307-318
(1987)

6. Gunawan, A., Lau, H.C., Lu, K.: An iterated local search algorithm for solving the orienteering prob-
lem with time windows. In: G. Ochoa, F. Chicano (eds.) proceedings of the 15th European Confer-
ence on Evolutionary Computation in Combinatorial Optimisation (EvoStar 2015), 8-10 April 2015,
Copenhagen, Denmark, Lecture Notes in Computer Science, vol. 9026, pp. 61-73. Springer-Verlag,
Berlin, Germany (2015)

7. Hu, Q., Lim, A.: An iterative three-component heuristic for the team orienteering problem with time
windows. European Journal of Operational Research 232(2), 276-286 (2014)

8. Johnson, S.M.: Generation of permutations by adjacent transposition. Mathematics of Computation
17(83), 282-285 (1963)

9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598),
671-680 (1983)

10. Labadie, N., Mansini, R., Melechovsky, J., Calvo, R.-W.: Hybridized evolutionary local search algo-
rithm for the team orienteering problem with time windows. Journal of Heuristics 17(6), 729-753
(2011)

11. Labadie, N., Mansini, R., Melechovsky J.and Calvo, R.: The team orienteering problem with time
windows: an LP-based granular variable neighborhood search. European Journal of Operational Re-
search 220(1), 15-27 (2012)

12. Lee, D.H., Cao, Z., Meng, Q.: Scheduling of two-transtainer systems for loading outbound containers
in port container terminals with simulated annealing algorithm. International Journal of Production
Economics 107(1), 115-124 (2007)

13. Lin, S.W., Yu, V.E: A simulated annealing heuristic for the team orienteering problem with time
windows. European Journal of Operational Research 217(1), 94-107 (2012)

14. Lin, S.W., Yu, V.F, Chou, S.Y.: Solving the truck and trailer routing problem based on a simulated
annealing heuristic. Computers and Operations Research 36(5), 1683-1692 (2009)

Aldy Gunawan et al.

16.

17.

19.

20.

21.

. Lourengo, H., Martin, O., Stiitzle, T.: Iterated local search. In: Handbook of metaheuristics, pp. 320—

353. Springer (2003)

Montemanni, R., Gambardella, L.M.: Ant colony system for team orienteering problem with time
windows. Foundations of Computing and Decision Sciences 34(4), 287-306 (2009)

Montemanni, R., Weyland, D., Gambardella, L.M.: An enhanced ant colony system for the team orien-
teering problem with time windows. In: Proceedings of 2011 International Symposium on Computer
Science and Society (ISCCS), pp. 381-384. Kota Kinabalu, Malaysia (2011)

. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimiza-

tion: a survey and classification. In: J. Mira, J.R. Alvarez (eds.) Artificial Intelligence and Knowledge
Engineering Applications: First International Work-Conference on the Interplay between Natural and
Artificial Computation, Lecture Notes in Computer Science, vol. 3562, pp. 41-53. Springer (2005)
Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization heuristics for
solving the orienteering problem with time windows with dynamic programming. Computers and
Operations Research 36(4), 1191-1203 (2009)

Talbi, E.G., Hafidi, Z., Geib, J.M.: A parallel adaptive tabu search approach. Parallel Computing
24(14), 2003-2019 (1998)

Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iterated local search
for the team orienteering problem with time windows. Computers and Operations Research 36(12),
3281-3290 (2009)

