
A Mathematical Model and Metaheuristics for Time
Dependent Orienteering Problem

Aldy GUNAWAN? · Zhi YUAN? ·
Hoong Chuin LAU

Abstract This paper presents a generalization of the Orienteering Problem, the
Time-Dependent Orienteering Problem (TDOP) which is based on the real-life
application of providing automatic tour guidance to a large leisure facility such
as a theme park. In this problem, the travel time between two nodes depends
on the time when the trip starts. We formulate the problem as an integer linear
programming (ILP) model. We then develop various heuristics in a step by step
fashion: greedy construction, local search and variable neighborhood descent, and
two versions of iterated local search. The proposed metaheuristics were tested on
modified benchmark instances, randomly generated problem instances, and two
real world problem instances extracted from two popular theme parks in Asia.
Experimental results confirm the effectiveness of the developed metaheuristic ap-
proaches, especially an iterated local search with adaptive perturbation size and
probabilistic intensified restart mechanism. It finds within an acceptably short
computation time, the optimal or near optimal solutions for TDOP instances of
realistic size as in our target application.

Keywords Time-Dependent Orienteering Problem · Integer Linear Program-
ming · Metaheuristics · Iterated Local Search

1 Introduction

The Orienteering Problem (OP) is originated from the sport game of orienteering
[2]. The main goal is to find a single route by visiting as many nodes as possible

? Contributed equally

A. Gunawan and H.C. Lau
School of Information Systems, Singapore Management University, Singapore
E-mail: aldygunawan, hclau@smu.edu.sg
Z. Yuan
Professorship of Applied Mathematics, Department of Mechanical Engineering, Helmut
Schmidt University, Hamburg, Germany
E-mail: yuanz@hsu-hh.de

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

202

that maximizes the total collected score subject to a given time budget frame. It is
assumed that the starting point and the end point are fixed. Many OP applications
are described in the literature: selective travelling salesperson problem [21]), home
fuel delivery problem [8], single-ring design problem [20], and mobile tourist guide
[17].

Several variants of the OP include: 1) Team Orienteering Problem (TOP) [2,
18], 2) Orienteering Problem with Time Windows (OPTW) [15], 3)Team Orien-
teering Problem with Time Windows (TOPTW) [23], 4) Time-Dependent Orien-
teering Problem (TDOP) [5].

In this paper, we study the Time-Dependent Orienteering Problem (TDOP),
which is a generalization of OP. In the classical OP, the changes to the network
over time are not taken into account. However, in certain networks, the route
between two nodes actually depends on the network properties, such as congestion
levels, construction zone on certain segments, etc., which will affect the travel time
between two nodes. Our target application of this work is to provide automatic
tour guidance to theme park visitors, taking into account the waiting time of a
theme park varies over time. The goal is to maximize the overall utility of the
visited attractions within the tourist’s available visiting period.

We formulate the TDOP as an Integer Linear Programming (ILP) model. Due
to the computational inefficiency in solving large-scale instances with a commercial
ILP solver, we then develop various metaheuristics, including a greedy construc-
tion heuristic, two local search operators and variable neighborhood descent, and
two versions of iterated local search: a basic version and a further improved version
by adaptive perturbation strength and probabilistic intensification mechanism. All
these approaches were tested on modified benchmark instances, randomly gener-
ated instances and two case studies extracted from real world theme park data.

The paper is organized as follows. We first provide a brief review of the OP
and TDOP in Section 2. We then describe the TDOP and formulate it as an In-
teger Linear Programming model in Section 3. In Section 4, metaheuristics are
proposed to solve the problem. Section 5 provides the computational results to-
gether with the analysis of the results. Finally, we provide concluding perspectives
and directions for future research.

2 Literature Review

The Orienteering Problem (OP) [21], also known as the selective travelling sales-
person problem [11] or traveling salesman problem with profits [3], has received
increasing attention among researchers during recent decades. A comprehensive
survey of OP can be found in [24]. An earlier work [3] also provided a survey of
different classes of applications, modeling approaches and solution techniques.

[21] is the first to introduce a general description of the sport of orienteering
and develop heuristic approaches based on a Monte Carlo technique for the OP.
[9] introduced a new procedure which is based on four concepts: center of gravity,
randomness, subgravity, and learning. Several metaheuristics for solving the OP
have been proposed by researchers, such as Tabu Search [7], Genetic Algorithm
(GA) [19] and Ant Colony Optimization [16].

Time-Dependent Orienteering Problem (TDOP) is an extension of OP by tak-
ing into account changes to the network over time. The travel time from one node

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

203

to another node varies with time and depends on the start time. It was first pro-
posed by [5], where a (2 + ε)-approximation algorithm is also proposed for solving
it. However, [5] considers only equal utility for all nodes, thus the problem actually
reduces to visiting as many nodes as possible rather than maximizing total col-
lected utilities; besides, the proposed algorithm has not been empirically studied.
A very recent work [25] proposed ant colony system for solving a variant of TDOP
based on speed model, where the travel time between two nodes does not depend
on the starting time but on the speed given at each time step during the travel.
The speed for travelling between two nodes at a time step is assumed invariant
under different starting time. This speed model is very interesting since it pre-
serves the FIFO property: a vehicle that starts earlier will always arrive earlier.
And this is practical in many real-world applications. However, this speed model
may not hold in the general TDOP. For example, if the travel time between two
nodes includes waiting for a shuttle that arrives according to a fixed time table,
then it is not straightforward to compute the waiting time by the speed model due
to the speed invariance. In this work, we follow the more general time-dependence
defined in [5] that the travel time between two nodes depends only on the starting
time, and these travel times are assumed to be given. Besides, no assumption of
FIFO property is assumed from the input travel time data.

Other related work for TDOP includes [12] that proposed the Time-Dependent
Team Orienteering Problem; [1] that proposed two genetic algorithms for the
Time-Dependent Orienteering Problem with Time Windows which stems from
the application of tour itinerary planning in complex and large urban areas in
Tehran; [6] that presented the Time-Dependent Team Orienteering Problem with
Time Windows which originated from the development of personalised electronic
tourist guides by integrating the tourist planning problem and the use of public
transportation, and two different approaches based on Iterated Local Search are
proposed to solve a set of test instances based on real data for the city of San
Sebastian, Spain.

3 Time Dependent Orienteering Problem

A graphical description of the Orienteering Problem (OP) [24] can be briefly in-
troduced as follows. Given a set of nodes N := {1, 2, . . . , n}, where node 1 is
the starting point, and n is the end point; also given the utility of each node
U := {ui : i ∈ N}, the distance matrix D := {di,j : i, j ∈ N} representing the
travel time between any two nodes i, j, and a maximum travel time budget Tmax,
the objective is to find a path P that starts from node 1 and ends at node n
before Tmax, such that the total utility collected at all visited nodes in path P is
maximized.

In the time dependent orienteering problem (TDOP), the travel time from
nodes i to j depends on the time when the trip starts. Given k time horizons
H := {h1, h2, . . . , hk} with hi = hi, hi + 1, . . . , hi, where the travel time within
each horizon is constant D := {di,j,h : i, j ∈ N,h ∈ H}.

In our target practical application, theme park tour guidance, the travel time
di,j,h from node i to node j includes traveling from i to j, waiting time at j, and
the service time at j. The length of di,j,h mainly depends on the waiting time
at attraction j. The high-utility attractions are usually preferred by most of the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

204

Table 1 Parameters and decision variables

Notations Descriptions

ui the utility score for node i
Tmax the time budget to leave node n; it also specifies the number of time steps.
di,j,t the travel time from node i to node j, started at time period t.

Xijt = 1 if travel occurs from node i to node j at time period t; otherwise, 0

tourists, and thus usually have a long queue during busy hours. If our tour guidance
is used by a small portion of the visitors, taking into account their attraction
preference as utility value, and the historical data or real-time crowd statistics as
prediction of the waiting time, an optimal tour is expected to maximize the total
utility of the visited attractions, while avoiding visiting a popular attraction at its
most crowded hour.

We formulate the TDOP as an integer linear programming (ILP) model. Table
1 presents parameters and decision variables required to formulate the ILP model.

Maximize
n∑
i=1

n∑
j=1
j 6=i

Tmax∑
t=1

ui ×Xi,j,t (1)

The objective function (1) is to maximize the total collected utility score when
visiting nodes at certain time periods.

n∑
i>1

Tmax∑
t=1

Xi,1,t = 0 (2)

n∑
j>1

Tmax∑
t=1

X1,j,t = 1 (3)

Constraint (2) ensures that there is no return trip to the start point and con-
straint (3) ensures that the start point is node 1.

n−1∑
j=1

Tmax∑
t=1

Xn,j,t = 0 (4)

n−1∑
i=1

Tmax∑
t=1

Xi,n,t = 1 (5)

Constraints (4) and (5) ensure that the last visited node is node n.

n−1∑
i=1
i 6=e

Tmax∑
t=1

Xi,e,t =
n∑
j=2
j 6=e

Tmax∑
t=1

Xe,j,t ∀e = 2, 3, . . . , (n− 1) (6)

Constraint (6) guarantees the connectivity of the path for each node visited.

n∑
j=2
j 6=i

Tmax∑
t=1

Xi,j,t ≤ 1 ∀i = 2, 3, . . . , (n− 1) (7)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

205

Constraint (7) ensures that each node is visited at most once.

∑
e6=i,j

Tmax∑
u=t+di,j,t

Xj,e,u ≥ Xi,j,t;∀i, j = 1, . . . , n−1, i 6= j, j 6= 1, t ≤ Tmax−di,j,t (8)

The constraint (8) enforces if a trip from i to j starts at time t, and j is not the
end point, then a trip must start from j at a time period later than after visiting
j.

Xi,j,t = 0,∀i 6= j, t > Tmax − di,j,t (9)

(9) removes infeasible trips that starts too late.

4 Metaheuristics

As proved by Golden et al. in 1987 [8] that orienteering problem (OP) is NP-
hard, i.e. no polynomial time algorithm could be designed to solve this problem
to optimality. As a generalisation of the OP with time-dependent travel time, the
TDOP is also NP-hard. The mathematical model introduced in Section 3 can be
regarded as a time-expanded graph of the OP, which substantially increases the
problem dimension, making computation even more challenging.

In this paper, our target application of the TDOP is to provide real-time tour
guidance to theme park visitors, so it is practically infeasible to make the tourists
wait minutes or even hours for an optimal route. Therefore, a fast and effective
heuristic approach is essential for devising a practical theme park routing tool in
a dynamic environment.

4.1 Greedy Construction Heuristic

A greedy construction heuristic is a myopic strategy that always chooses one so-
lution component that is with the best immediate desirability based on a greedy
criterion. In TDOP, A path P is initialized with the starting node 1 and end node
n. Then, the construction proceeds iteratively by adding a solution component, in
our case, one unvisited node, to P . In each iteration, the selected unvisited node
is added to the end of the path, right before the end node n.

One important feature in the TDOP is to handle the time-dependent travel
time di,j,h. Since travel time changes as the starting time changes, and no FIFO
property is assumed, we are faced with the following non-trivial subproblems:

– EarliestArrival: given a starting time tstart to travel from node nprev to
current node ncur, find the earliest arrival time tarr at ncur; and

– LatestDeparture: given an arrival time tend at node nnext, find the latest
departure time tdep from node ncur.

An example of these two subproblems can be illustrated in Figure 1. They are
handled is as follows: EarliestArrival, as outlined in Procedure 1, iteratively
checks the earliest possible arrival time of each proceeding time horizon, until
a horizon surpasses current earliest possible arrival time; LatestDeparture in

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

206

Procedure 1 EarliestArrival (tstart, nprev, ncur, D, H)

hcur ← the time horizon that contains tstart

tend ← tstart + dnprev,ncur,hcur

for all h ∈ {hcur + 1, . . . , H} do
if tend < h then

break
else

if h + dnprev,ncur,h ≤ tend then

tend ← h + dnprev,ncur,h

end if
end if

end for
return tend

Procedure 2 LatestDeparture (tend, ncur, nnext, D, H)

hcur ← the time horizon that contains tend

tstart ← tend − dnprev,ncur,hcur

for all h ∈ {hcur − 1, . . . , 1} do
if tstart > h then

break
else

tstart ← min(tend − dnprev,ncur,h;h)
end if

end for
return tstart

(a) Starting from node 1 at time 10, the
earliest arrival time at node 2 is 16.

(b) Requiring arrival at node 2 at time 18, the
latest departure time at node 1 is 11.

Fig. 1 Example of finding the earliest arrival and latest departure time in time dependent
travels. The travel time from node 1 to node 2 is 4 if it starts within time interval [0, 11], and
is 8 within [12, 18].

Procedure 2 on the contrary, iteratively checks backwards each time horizon until
one horizon h in which a trip can be started, then the latest departure time is set
to either tend − dnprev,ncur,h, or the horizon boundary h, whichever starts first.

In each construction iteration, a node is feasible to be appended to the path
only if its earliest arrival time computed by Procedure 1 is no later than its latest
departure time computed by Procedure 2. From the set of all feasible nodes N∗,
a best node n∗ is then selected by the following greedy criterion:

n∗ ← arg max
i∈N∗

uαi

δβi
· rand(

1

γ
, 1). (10)

That is, the desirability of a node i ∈ N∗ depends on two terms: the utility value
ui, and the distance δi which is calculated as the difference between the earliest

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

207

Procedure 3 ForwardPropagation (P , ns)

tstart ← tarrns−1

for all i ∈ {s, s + 1, . . . ,m} do
tarrni

← EarliestArrival(tstart, ni−1, ni)

tstart ← tarrni
end for

Procedure 4 BackwardPropagation (P , ns)

tend ← tdepns+1

for all i ∈ {s, s− 1, . . . , 1} do
tdepni

← LatestDeparture(tend, ni, ni+1)

tend ← tdepni

end for

arrival time at i and earliest possible leaving time at the previous node. α and β
are parameters determining the impact of utility and distance, respectively. The
rand(1

γ , 1) is the noise term that generates a uniformly random number ranging

from 1
γ to 1, where γ ≥ 1 is a parameter that allows candidates of γ times worse

than the best one to be selected. If γ is set to 1, it selects deterministically the
most desirable node at each step. The greedy construction terminates when either
the visitation time budget Tmax is finished, or no more unvisited node can be
appended.

4.2 Local Search and Variable Neighborhood Descent

Two types of basic local search operators are adopted in our work, the insert
and replace operators. We also consider hybridizing the two operators within a
variable neighborhood descent framework. In order to make the feasibility check
of each operator more efficient, a starting time propagation procedure is used and
described below.

4.2.1 Starting Time Propagation

Given a path P of m nodes, P := {ni : i = 1, 2, . . . ,m}, the starting time prop-
agation concerns assigning the earliest arrival time tarri and the latest departure
time tdepi for each node ni ∈ P . It can be classified into two different procedures,
the ForwardPropagation in Procedure 3 that propagates the earliest arrival
time in the forward direction, and the BackwardPropagation in Procedure 4
that propagates the latest departure time in the backward direction. Note that
both procedures can also propagate for a partial path, starting from a certain
index ns.

The ForwardPropagation procedure iteratively takes the earliest arrival
time of the previous node to obtain the earliest arrival time of the current node by
using the EarliestArrival procedure, while the BackwardPropagation pro-
cedure iteratively takes the latest departure time of the next node to compute the
latest departure time of the current node by the LatestDeparture procedure.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

208

Procedure 5 Insert (P , N)

for all i ∈ random nodes of N do
for all j ∈ random positions of P do

tarri ← EarliestArrival(tarrnj
, nj , i)

tdepi ← LatestDeparture(tdepnj+1
, i, nj+1)

if tarri ≤ tdepi then
insert i into path P at position j
N ← N \ {i}
ForwardPropagation(P, j + 1)
BackwardPropagation(P, j − 1)
break

end if
end for

end for

4.2.2 Local Search Operators: Insert and Replace

The random first improvement strategy is applied for the insert operator, as
outlined in Procedure 5. Each random unvisited node i ∈ N is tried to be inserted
between random position j and j + 1 in the path P . The earliest arrival time of
node i is computed based on the earliest arrival time at node j, and the latest
departure time of node i is computed based on the latest arrival time of node
j + 1. If the node i can arrive earlier than its latest departure time, it is inserted
at position j, and earliest arrival time of the nodes after j will be updated using
ForwardPropagation and the latest departure time of the nodes before j will
be updated using BackwardPropagation.

Similarly, the replace operator also uses a random first improvement strategy.
An unvisited node i is considered better than node nj at position j of the path
P , either when its utility value is strictly better, or in the case of equal utility,
the difference between its earliest arrival time and latest departure time is strictly
larger. In such case, the two nodes are exchanged, and the starting time of the
rest of the nodes are updated by propagation.

4.2.3 Variable Neighborhood Descent

The basic idea of Variable Neighborhood Descent (VND) [14] is to apply a set of
local search operators iteratively, such that the final solution obtained is locally
optimal with respect to all local search operators (subject to iteration order).
In such a way, variable neighborhoods, such as insert and replace operators in
Section 4.2.2, can be hybridized. Note that VND starts with a complete solution
and returns a modified solution, hence itself can also be regarded as a local search
operator.

4.3 Iterated Local Search

Iterated local search (ILS) [13] is a simple yet effective, general-purpose meta-
heuristic. It starts with an initial solution and a local search, and then iterate
the three components of ILS: perturbation, local search, and acceptance criterion.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

209

Procedure 6 Perturbation (P , N)

randomly remove s nodes from P
tabu the removed nodes for one local search iteration
ForwardPropagation(P, 1)
BackwardPropagation(P, |P |)

Procedure 7 AcceptanceBasic (P , P gb, P rb, Imax)

if Incumbent P is better than restart best P rb then
P rb ← P
if Incumbent P is better than global best P gb then

P gb ← P
end if

else
P ← P rb

if consecutive non-improved iteration count exceeds maximum Imax then
Restart by a greedy construction followed by a variable neighborhood descent

end if
end if

Here, the initial solution is constructed by the greedy method in Section 4.1, the
variable neighborhood descent in Section 4.2.3 is adopted as the subsidiary lo-
cal search procedure. In the Perturbation procedure outlined in Procedure 6,
s random nodes are removed from the incumbent path P . Note that a node can
be removed only if the earliest arrival time at the next node is not delayed. This
is usually not an issue in a Euclidean-distance graph, however, it may not hold
if the travel time on an edge is time dependent due to traffic conditions as in
some benchmark instances mentioned in Section 5.1. s is a parameter reflecting
the perturbation strength. A high value of s may result in slow convergence, while
a smaller value of perturbation strength may quickly lead to a good solution at
the beginning but is more likely to be trapped in a deep local optimum. These
s removed nodes are tabued for one local search iteration, so that they cannot
be immediately inserted or replaced back to the incumbent path, allowing more
diversification.

We have considered two versions of the iterated local search in this work, a
basic version named Basic ILS and a modified version named Adaptive ILS. Their
main difference lies in the acceptance criterion, or more precisely, in how to handle
algorithm stagnation. The stagnation is referred to when the maximum number of
non-improved iterations Imax is reached. In Basic ILS, the algorithm is restarted
by a greedy construction and variable neighborhood descent, as detailed in Proce-
dure 7. Adaptive ILS in Procedure 8 first increments the perturbation strength s,
and resets the iteration counter to zero, until the maximum perturbation strength
smax is reached, then restarts the search. However, since Adaptive ILS allows more
non-improved iterations before restart, if it is trapped in an uninteresting re-
gion, many iterations will be wasted. To this end, we developed a probabilistic
intensification mechanism. For each unsuccessful iteration, with an intensification
probability pin, the best-so-far solution, instead of the restart best solution, will
be copied into the incumbent.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

210

Procedure 8 AcceptanceAdaptive (P , P gb, P rb, pin, Imax, smax)

if Incumbent P is better than restart best P rb then
P rb ← P
Set perturbation strength to minimum s← smin

if Incumbent P is better than global best P gb then
P gb ← P

end if
else

if rand(0, 1) < pin then
P ← P gb // Intensify by copying the global best solution to incumbent

else
P ← P rb

end if
if consecutive non-improved iteration count exceeds maximum Imax then

Increment perturbation strength s← s + 1
if s > smax then

Restart by a greedy construction followed by a variable neighborhood descent
end if

end if
end if

5 Computational Results

The comprehensive computational results including experimental setup will be
described below.

5.1 Instance Setup

Three classes of time dependent orienteering problem (TDOP) instances are con-
sidered in this study:

– Benchmark. The benchmark instances are adopted from [22]. These instances
were initially developed by [2]. The number of nodes in these instances varies
from 21 to 102. These instances were further adapted by Verbeek et al. [25]
by varying travel time at different time horizons. Each instance has a time
span from 7 am to 9 pm. These 14 hours were divided into four different time
horizons: 7 am to 9 am, 9 am to 5 pm, 5 pm to 7 pm, and 7 pm to 9 pm, since the
travel time on each edge may depend on the traffic load at different period of the
day. In order to use our time-expanded model for these benchmark instances,
the original travel time is discretized by a unit of µ = 1, 5, 15, 30 minutes, which
corresponds to a total number of time steps Tmax = 840, 168, 56, 28. In order
to guarantee the feasibility, the discretization of a travel time d is by rounding
up after divided by the time unit, dd/µe. The larger the time unit, the less
the number of time steps, and thus, easier for the time-expanded model to be
solved.

– Random. The second class of instances is randomly generated with varying val-
ues of the parameters: number of nodes n and time budget Tmax. Each time
step is considered a time horizon. The utility score for each node is generated
randomly between 1 to 9. The start and end nodes are allocated with zero
utility scores.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

211

Table 2 Characteristics of problem instances and their optimal or best-known solution com-
puted by CPLEX with the mathematical program model. The instance characteristics include
number of nodes |N |, number of discrete time steps Tmax, and number of time horizons k.

Class Name |N | Tmax k
CPLEX Result

Optimal Time

Benchmark TDOP1-{1, 5, 15, 30} 32 {840, 168, 56, 28} 4 220‡ 18.47 mins
TDOP2-{1, 5, 15, 30} 21 {840, 168, 56, 28} 4 355‡ 55.69 secs
TDOP3-{1, 5, 15, 30} 33 {840, 168, 56, 28} 4 590‡ 1.88 hours
TDOP4-{1, 5, 15, 30} 100 {840, 168, 56, 28} 4 623‡* >24 hours
TDOP5-{1, 5, 15, 30} 66 {840, 168, 56, 28} 4 850‡ 13.11 hours
TDOP6-{1, 5, 15, 30} 64 {840, 168, 56, 28} 4 768‡ 21.23 hours
TDOP7-{1, 5, 15, 30} 102 {840, 168, 56, 28} 4 690‡* >24 hours

Random Rand10× 10 10 10 10 20 0.17 secs
Rand10× 20 10 20 20 41 0.47 secs
Rand10× 30 10 30 30 46 2.06 secs
Rand10× 40 10 40 40 37 5.60 secs
Rand20× 10 20 10 10 42 1.20 secs
Rand20× 20 20 20 20 80 2.14 mins
Rand20× 30 20 30 30 84 10.73 mins
Rand20× 40 20 40 40 107 14.10 mins
Rand30× 10 30 10 10 47 1.94 secs
Rand30× 20 30 20 20 103 3.49 mins
Rand30× 30 30 30 30 151* >24 hours
Rand30× 40 30 40 40 143* >24 hours
Rand40× 10 40 10 10 63 10.13 secs
Rand40× 20 40 20 20 145 26.26 mins
Rand40× 30 40 30 30 176* >24 hours
Rand40× 40 40 40 40 217* >24 hours

Real world Real1 17 36 9 195 15.3 mins
Real2 40 42 42 208* >24 hours

‡ optimal or best known solution for discrete time unit 30.
* best known solution obtained after 24 hours

– Real world. Two real-world instances are obtained from two of the most pop-
ular theme parks in Asia. Each node represents an attraction, the utility vector
of each attraction is derived from user preferences data, and the travel time
from one attraction to another includes the traveling time (by shuttle or on
foot), and service time at an attraction, and the waiting time that varies over
time.

The details of instance characteristics can be referred to in Table 2.

5.2 Computational Results of Mathematical Model

The mathematical programming model in Section 3 is solved by commercial solver
CPLEX 10.2 on a computing server with multi-core Intel Xeon CPU ES-2667 at
2.90 GHz with 256GB RAM running Microsoft Server 2008 R2 Enterprise. Up to
24 threads are used per run.

The last two columns of Table 2 summarizes the optimal solution and compu-
tation time obtained by CPLEX for each instance. The computational scalability
of the problem is best illustrated in the Random class of instances. Although most

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

212

instances can be solved to optimality, the computation time explodes quickly as
the number of nodes and number of time steps increase. Instances with more than
30 nodes and 30 time steps cannot be solved to provable optimality within 24
hours. It takes minutes of computation time to compute an optimal route for in-
stances from 20 nodes and 20 time steps. In the instance class Benchmark, CPLEX
is only applied to instances discretized by time unit 30 minutes, resulting in 28
time steps in 14 hours.1 Note that since the number of time horizons k is reduced
to 4, the computational time required is also reduced noticeably. Here, instances
with up to 66 nodes and 28 time steps can be solved to provable optimality within
24 hours. However, the computation time required is very long: It takes over 1
hour to solve instances from 33 nodes. Concerning the two real world theme
park instances, the smaller one Real1 with 17 nodes and 36 time steps is solved
to optimum in around 15 minutes, while the larger one Real2 cannot be solved to
provable optimality within 24 hours.

Although most of the instances considered can be solved optimally by CPLEX,
the computation time is unpractically long, usually minutes to hours for a realis-
tic problem size. However, our target application is a time-critical problem: each
instance is generated for each visitor on the fly based on their personal preference
and available time, and then the tour guidance system is expected to compute
a good solution within an acceptable time, i.e., maximum one second. Besides,
the coarse time discretization required by the mathematical model also reduces
the accuracy of travel time input. Therefore, the mathematical programming may
not be an ideal approach for this application, however, the optimal or best known
solution computed in this section can be a good reference in assessing the quality
of our metaheuristic approaches in the next section.

1 For instances with smaller discretization time units such as 15, 5, and 1 minutes, most of
the instances cannot be solved to optimality within 24 hours.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

213

Table 3 The computational results of the four metaheuristics: greedy, variable neighborhood descent (VND), basic iterated local search (Basic ILS),
and adaptive iterated local search (Adaptive ILS). Each metaheristic is run 30 trials on each instance, and best, mean, and worst performance of each
30 runs are listed below. Percentage deviation from optimal or best-known solution is listed, where available in Table 2, or else the objective value is
listed. Statistically significantly best results are marked in bold face.

Instance
Greedy VND Basic ILS Adaptive ILS

Best Mean Worst Best Mean Worst Best Mean Worst Best Mean Worst

TDOP1-1 280 273.8 270 280 280 280 285 284.3 280 285 284.8 280
TDOP1-5 270 264.7 260 280 273.8 270 280 280 280 280 280 280
TDOP1-15 245 238.7 235 260 251.8 245 260 257.5 255 260 260 260
TDOP1-30 2.27% 4.02% 6.82% 0.00% 1.29% 4.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TDOP2-1 450 437.7 430 450 450 450 450 450 450 450 450 450
TDOP2-5 430 422.0 415 440 430.7 430 440 440 440 440 440 440
TDOP2-15 385 376.3 375 395 395 395 395 395 395 395 395 395
TDOP2-30 0.00% 2.96% 5.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TDOP3-1 760 744.3 740 770 762.7 750 780 778.3 770 780 777.7 770
TDOP3-5 730 725.7 720 740 731 730 750 742.3 730 750 744.3 730
TDOP3-15 660 647.7 640 670 660.7 650 670 665 660 670 663 660
TDOP3-30 0.00% 0.90% 3.39% 0.00% 0.06% 1.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TDOP4-1 1014 980.2 964 1032 1003.3 989 1056 1032.2 1012 1085 1048.5 1015
TDOP4-5 935 910.9 891 956 927.2 909 964 942 921 989 953.9 925
TDOP4-15 791 777.1 761 824 791 776 831 800.8 771 842 812.7 783
TDOP4-30 2.25% 4.03% 5.78% 3.21% 4.20% 5.14% 1.93% 4.56% 5.94% 1.61% 3.55% 6.10%

TDOP5-1 1495 1458.2 1410 1495 1468.7 1425 1505 1488.8 1460 1505 1497.3 1465
TDOP5-5 1260 1233.8 1195 1260 1238.2 1200 1260 1244.7 1220 1260 1246.8 1215
TDOP5-15 865 851.7 835 870 854 845 870 859.3 845 870 865 850
TDOP5-30 0.59% 1.78% 2.94% 0.59% 1.47% 3.53% 0.00% 0.69% 1.76% 0.00% 0.24% 1.18%

TDOP6-1 1326 1303.4 1290 1326 1316.4 1302 1338 1328.8 1320 1344 1337.6 1332
TDOP6-5 1224 1186.4 1158 1236 1198.4 1176 1242 1221 1206 1254 1237.0 1212
TDOP6-15 1182 1153.2 1134 1206 1180.2 1164 1236 1211 1194 1254 1233.6 1206
TDOP6-30 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TDOP7-1 1182 1164.6 1152 1232 1211.6 1192 1285 1260.1 1236 1318 1283.2 1253
TDOP7-5 1084 1065.2 1050 1113 1093.6 1078 1182 1140 1116 1195 1159.1 1134
TDOP7-15 960 940.9 920 1000 982.7 967 1026 1005.8 980 1046 1019.8 983
TDOP7-30 1.30% 1.82% 2.46% 0.58% 1.42% 2.03% 0.87% 1.46% 1.59% 0.58% 1.14% 1.59%

Rand10 × 10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand10 × 20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand10 × 30 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand10 × 40 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand20 × 10 7.14% 7.14% 7.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand20 × 20 0.00% 0.80% 1.27% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand20 × 30 0.00% 0.16% 1.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand20 × 40 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand30 × 10 6.38% 6.38% 6.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand30 × 20 3.88% 3.88% 3.88% 0.00% 1.62% 1.94% 0.00% 0.45% 0.97% 0.00% 0.58% 1.94%
Rand30 × 30 3.29% 4.30% 4.61% 1.32% 2.11% 3.29% 0.00% 1.64% 2.63% 0.00%* 1.36% 2.63%
Rand30 × 40 0.00% 0.40% 0.70% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand40 × 10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand40 × 20 0.00% 0.62% 0.69% 0.00% 0.67% 0.69% 0.00% 0.74% 1.38% 0.00% 0.83% 2.07%

Rand40 × 30 0.56% 1.98% 3.95% 0.56% 1.53% 2.26% 0.56% 1.54% 2.82% 0.00%‡ 1.21% 2.26%
Rand40 × 40 2.30% 2.69% 3.23% 0.46% 1.03% 1.38% 0.46% 0.89% 1.38% 0.00% 0.68% 1.38%

Real1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Real2 0.96% 1.54% 1.92% 0.00% 0.19% 0.48% 0.00% 0.18% 0.48% 0.00% 0.14% 0.48%

* New best known solution found: 152. ‡ New best known solution found: 177.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

214

5.3 Computational Results of Metaheuristics

The metaheuristics introduced in Section 4 were implemented in Java, compiled
by JDK 7, and run on a MacBook Air with 1.7GHz Intel Core i7 and 8GB memory.
Only single thread is used for each metaheuristic run.

Four metaheuristics are considered here: a restart greedy append construc-
tion heuristic (Greedy), a restart variable neighborhood descent (VND), a basic
version of iterated local search with restart (Basic ILS), and a modified iterated lo-
cal search with adaptive perturbation size and probabilistically intensified restart
(Adaptive ILS). The following parameter settings are adopted for these algorithms.
For greedy construction, the weight of utility and distance is set to α = β = 1
following most of the existing work on orienteering problem; the noise factor γ is
set to 1 in the first run to make it deterministic, and set to 5 in all the following
runs. For Basic ILS, the perturbation strength s is set to 3, and the maximum
non-improved iteration Imax is set to 10. For Adaptive ILS, Imax is also set to
10, and the minimum perturbation strength smin is set to 3, and the maximum
smax = d|P |/4e, i.e. the roundup of one fourth of the incumbent path size; the
intensification probability pin is set to 0.05.

Each metaheuristic is allowed a maximum runtime of one second, and is per-
formed 30 independent runs on each instance. The best, mean and worst per-
formance of 30 runs are recorded in Table 3. For each instance, the significantly
best performing metaheuristics by the Wilcoxon’s signed rank test at 0.05 level is
marked in bold face. As is clearly shown, Adaptive ILS is the significantly best
performing algorithms for all benchmark instances and real world instances. Espe-
cially in the largest benchmark instances TDOP4 and TDOP7, Adaptive ILS is
usually over 1% better than the Basic ILS, and around 2 to 5% better than VND
and greedy. It remains the significantly best performing algorithm for all but one
random instances, where it was slightly but statistically significantly outperformed
by greedy and VND. Basic ILS as runner-up significantly outperforms VND, which
in turn performs significantly better than greedy.

Comparing the metaheuristic approaches with the mathematical program-
ming approach, regardless of only one second computation time, Adaptive ILS
is able to improve the best known solutions of random instances Rand30× 30 and
Rand40 × 30 that are computed by CPLEX 10.2.0 solver in 24 hours. The best
run of Adaptive ILS has found the optimum of all random instances, real world
instances, and the benchmark instances up to size 66. It misses the optimum of
the largest instances TDOP4-30 and TDOP7-30 composed of 100 nodes, leaving
a gap of 0.6 to 1.6 % at its best run, or 1.1 to 3.6% at its average. One second
is probably too short for instances of such size. Considering mean performance,
for instance size under 30, Adaptive ILS finds the optimal solution in each of the
30 runs; the average deviation from the optimum is less than 1.4% for the ran-
dom instances up to size 40, 0.14% for the real world instances, and 0.24% for the
benchmark instances up to size 66.

Another important advantage of the metaheuristic approaches over the time-
expanded mathematical model is that, it does not require a time discretization,
and thus can use the travel time of arbitrary accuracy. Since the travel time is
discretized by rounding up to guarantee feasibility, it compromises the quality of
the obtained solution. Comparing the result of benchmark instances with time
unit of 1 minute in Table 3 to optimal result with time unit 30 minutes in Ta-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

215

ble 2, the solution quality loss is from over 20% as on instance TDOP2 with size
21, to around 45% on instance TDOP5 with size 66. A finer time discretization
than 30 minutes suffers the time-expanded mathematical model, however, using
a coarser discretization at the expense of solution quality also demeans the orig-
inal motivation of using mathematical model, which is to guarantee optimality.
The metaheuristic approaches explored in this work, especially the Adaptive ILS,
appear to be practical and promising for our application problem.

6 Conclusion

This paper presents a general form of the Time-Dependent Orienteering Problem
(TDOP). We formulated this problem by an integer linear programming (ILP)
model based on time-expanded graph. We further adopted two real-world instances
from two most popular theme parks in Asia, together with modified benchmark
instances, and randomly generated instances to study the scalability. The com-
putational difficulty turns out to explode quickly for a commercial ILP solver as
problem size increases.

As the underlying application problem is time critical, the development of
a good metaheuristic is essential. Several heuristics are developed. From experi-
mental results, we showed that our proposed approach, iterated local search with
adaptive perturbation size and probabilistic intensified restart, appears to be fast
and effective: within one second’s computation time, it manages to find the optimal
solution for most of the instances considered. It even improves for two instances
the best known solutions computed by CPLEX for over 24 hours.

An interesting idea to extend our current ILS is to consider a hierarchical iter-
ated local search approach [10], as well as using automatic algorithm configuration
tool to determine the algorithm setting. It will be also interesting to compare with
some state-of-the-art approaches such as ant colony systems [25]. From math-
ematical programming point of view, it would be interesting to consider further
Branch-and-Cut techniques as in [4]. In the application aspect, our future research
includes extracting more instances from our real world theme park tour guidance
data, and extending the applicability of our approach to other types of real-world
variants including time-dependent utility score, and the time-dependent team ori-
enteering problem.

Acknowledgements This research is supported by the Singapore National Research Founda-
tion under its International Research Centre @ Singapore Funding Initiative and administered
by the IDM Programme Office, Media Development Authority (MDA). Zhi Yuan acknowledges
support by BMBF Verbundprojekt E-Motion (grant number 05M13GBA).

References

1. Abbaspour, R.A., Samadzadegan, F.: Time-dependent personal tour planning and schedul-
ing in metropolises. Expert Systems with Applications 38(10), 12,439–12,452 (2011)

2. Chao, I.M., Golden, B.L., Wasil, E.A.: Theory and methodology - the team orienteering
problem. European Journal of Operational Research 88(3), 464–474 (1996)

3. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Trans-
portation Science 39(2), 188–205 (2005)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

216

4. Fischetti, M., Salazar, J.J., Toth, P.: Solving the orienteering problem through branch-
and-cut. INFORMS Journal on Computing 10, 133–148 (1998)

5. Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteering. In-
formation Processing Letters 83, 57–62 (2002)

6. Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., Linaza, M.T.: Integrating
public transportation in personalised electronic tourist guides. Computers and Operations
Research 40(3), 758–774 (2013)

7. Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective
travelling salesman problem. European Journal of Operational Research 106(2-3), 539–545
(1998)

8. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Research Logistics 34(3),
307–318 (1987)

9. Golden, B., Wang, Q., Liu, L.: A multifaceted heuristic for the orienteering problem. Naval
Research Logistics 35(3), 359–366 (1988)

10. Hussin, M.S., Stützle, T.: Hierarchical iterated local search for the quadratic assignment
problem. In: M. Blesa, et al. (eds.) Proceeding of Hybrid Metaheuristics (HM 2009),
Lecture Notes in Computer Science, vol. 5818, pp. 115–129. Springer (2009)

11. Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Applied
Mathematics 26(2-3), 193–207 (1990)

12. Li, J.: Model and algorithm for time-dependent team orienteering problem. In: S. Lin,
X. Huang (eds.) Communications in Computer and Information Science, Communications
in Computer and Information Science, vol. 175, pp. 1–7 (2011)

13. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Handbook of metaheuris-
tics, pp. 320–353. Springer (2003)

14. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Operations
Research 24(11), 1097–1100 (1997)

15. Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization
heuristics for solving the orienteering problem with time windows with dynamic program-
ming. Computers and Operations Research 36(4), 1191–1203 (2009)

16. Souffriau, W., Vansteenwegen, P., Berghe, G., Oudheusden, D.V.: Automated parameteri-
sation of a metaheuristic for the orienteering problem. In: C. Cotta, M. Sevaux, K. Sörensen
(eds.) Adaptive and multilevel metaheuristics, Studies in Computational Intelligence, vol.
136, pp. 255–269 (2008)

17. Souffriau, W., Vansteenwegen, P., Vertommen, J., Berghe, G.V., Oudheusden, D.V.: A
personalised tourist trip design algorithm for mobile tourist guides. Applied Artificial
Intelligence 22(10), 964–985 (2008)

18. Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering problem.
Computer and Operations Research 32(6), 1379–1407 (2005)

19. Tasgetiren, M.: A genetic algorithm with an adaptive penalty function for the orienteering
problem. Journal of Economic and Social Research 4(2), 1–26 (2001)

20. Thomadsen, T., Stidsen, T.: The quadratic selective travelling salesman problem. In-
formatics and mathematical modelling technical report IMM-Technical Report-2003-17,
Technical University of Denmark (2003)

21. Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the Operational
Research Society 35(9), 797–809 (1984)

22. Vansteenwegen, P.: TDOP Format http://www.mech.kuleuven.be/en/cib/op/#section-20
(2013)

23. Vansteenwegen, P., Souffriau, W., Berghe, G.V., van Oudheusden, D.: Iterated local search
for the team orienteering problem with time windows. Computers and Operations Research
36(12), 3281–3290 (2009)

24. Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: A survey.
European Journal of Operational Research 209(1), 1–10 (2011)

25. Verbeeck, C., Sörensen, K., Aghezzaf, E.H., Vansteenwegen, P.: A fast solution method
for the time-dependent orienteering problem. European Journal of Operational Research
236(2), 419–432 (2014)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

217

