
AUTHOR  C
OPY

Web Intelligence and Agent Systems: An International Journal 12 (2014) 347–358 347
DOI 10.3233/WIA-140304
IOS Press

Multi-agent orienteering problem
with time-dependent capacity constraints
Cen Chen, Shih-Fen Cheng * and Hoong Chuin Lau
School of Information Systems, Singapore Management University, Singapore
E-mail: {cenchen.2012,sfcheng,hclau}@smu.edu.sg

Abstract. In this paper, we formulate and study the Multi-agent Orienteering Problem with Time-dependent Capacity Constraints
(MOPTCC). MOPTCC is similar to the classical orienteering problem at the single-agent level: given a limited time budget, an
agent travels around the network and collects rewards by visiting different nodes, with the objective of maximizing the sum of his
collected rewards. The most important feature we introduce in MOPTCC is the inclusion of multiple competing and interacting
agents. All agents in MOPTCC are assumed to be self-interested, and they interact with each other when arrive at the same nodes
simultaneously. As all nodes are capacitated, if a particular node receives more agents than its capacity, all agents at that node will
be made to wait and agents suffer collectively as a result (in terms of extra time needed for queueing). Due to the decentralized
nature of the problem, MOPTCC cannot be solved in a centralized manner; instead, we need to seek out equilibrium solutions;
and if this is not possible, at least approximated equilibrium solutions. The major contribution of this paper is the formulation of
the problem, and our first attempt in identifying an efficient and effective equilibrium-seeking procedure for MOPTCC.

Keywords: Multi-agent orienteering problem, sampled fictitious play

1. Introduction

The orienteering problem is a generalization of the
traveling salesman problem that can be used to model
a wide variety of real-world problems like tour plan-
ning, route planning for facility inspection and pa-
trolling of security forces in a network. A large number
of variants and corresponding algorithms for solving
them have been introduced. The most common vari-
ants of the orienteering problems include: (1) The team
orienteering problem, in which a group of centrally
controlled agents are sent to collect rewards by visit-
ing check points [2,5], (2) The orienteering problem
with time windows, in which service time windows are
specified for each node [12], and (3) the combination
of the above two variants (the team orienteering prob-
lem with time windows) [18].

In this paper, we introduce a multi-agent version of
the problem, which we believe to be the first of its
kind. The application domain that motivates our re-

*Corresponding author.

search is the crowd control problem for a collection
of interconnected service providers (real-world exam-
ples include the MICE1 industry, amusement parks,
and museums). Individual agents (visitors) in this en-
vironment aim to visit a sequence of selected service
providers with the objective of maximizing their util-
ities obtained by receiving services, while observing
their individual time budget limitations and service
provider’s time-dependent capacity constraints.

For the operators of such facilities, one important
task they need to perform on a daily basis is to provide
proper guidance to visitors, such that visitors can ob-
tain as much values from selected service providers as
possible. Such guidance may be passive, which is de-
livered via signboards or staff on the ground. With mo-
bile devices becoming popular, we see the opportunity
that such guidance can also be personalized and dy-
namic, in which case individual visitors may be guided
by following instructions delivered in real time to their
mobile devices. As the operator needs to watch closely

1Meetings, incentives, conferences, and exhibitions.

1570-1263/14/$27.50 c© 2014 – IOS Press and the authors. All rights reserved



AUTHOR  C
OPY

348 C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints

how queues build up at different service providers
throughout the day, it needs to generate recommenda-
tions for individual visitors following their respective
preferences on one hand, while satisfying queue capac-
ity constraints for different service providers through-
out the day on the other.

More precisely, we introduce the Multi-agent Orien-
teering Problem with Time-dependent Capacity Con-
straints (MOPTCC). Our contributions are as follows:

1. We introduce and formulate this new prob-
lem. In our problem, the nodes are subject to
time-dependent capacity constraints and time-
dependent rewards. The rewards allow us to
model individual visitors’ preferences, while the
capacity constraints enable the operator to man-
age and control crowds.

2. We solve the MOPTCC involving multiple self-
interested agents. Since agents are maximizing
their respective utilities (and not the global ob-
jective function in a standard optimization prob-
lem), the challenge is to seek what is known as
an equilibrium solution rather than a centralized
optimal solution.

3. We propose two solution approaches: (1) a cen-
tralized approach with integer linear program
(ILP) that computes the exact global solution
(which in most cases are not equilibrium solu-
tions); and (2) a variant of the sampled fictitious
play algorithm [15] that can efficiently identify
equilibrium solutions. We focus on the second
approach, and use a wide variety of computa-
tional experiments to demonstrate its effective-
ness.

This paper proceeds as follows. After literature re-
view in Section 2, an integer linear programming
model of the MOPTCC is presented in Section 3. An
efficient Nash equilibrium seeking algorithm based on
sampled fictitious play is then proposed in Section 4.
The experimental results are presented in Section 5.
Finally, Section 6 concludes the paper.

2. Literature review

The orienteering problem (OP), originally defined
by Tsiligirides [25], was motivated by scheduling a
cross-country sport in which participants get rewards
from visiting a predefined set of checkpoints. As a gen-
eralization of the Traveling Salesman problem, it is a
notoriously challenging NP-hard problem that has long

been studied since 1980s. Tsiligirides [25] presented
an early survey of heuristic methods for OP; this was
followed more recently by a survey of Vansteenwegen
et al. [28] which provided formulations and solution
approaches for the OP and its related variants. Essen-
tially, our problem is a variant of OP which can be
characterized as the team orienteering problem (TOP)
with time windows (TOPTW). TOP is an extension
of OP where the goal is to plan a set of routes for
all the members of the team that maximizes the to-
tal rewards collected by the team within the time limit
Tmax [5]. TOP is well-studied, and many researchers
have proposed either exact solution approach (e.g.,
Butt and Cavalier [4], Tang and Miller-Hooks [23], and
Boussier et al. [2]) or heuristic approach (e.g., Chao
et al. [5] and Tang and Miller-Hooks [23]). Most re-
cent research efforts on TOP have been on the devel-
opment of efficient and effective heuristics, such as
tabu-search-based heuristic by Archetti et al. [1], ant
colony optimization approach by Ke et al. [13], guided
local search approach by Vansteenwegen et al. [26],
and greedy randomized adaptive search procedure by
Souffriau et al. [22]. Compared to TOP, TOPTW re-
ceived much less attention, and majority of the re-
search efforts are solely on the development of heuris-
tics, e.g., the ant colony optimization by Montemanni
and Gambardella [18], the iterated local search by
Vansteenwegen et al. [27], and the hybridized evolu-
tionary local search algorithm by Labadie et al. [14].

In this paper, we depart from the classical setting of
TOP and TOPTW, which is concerned with the route
planning for a team of agents in a centralized fashion.
Instead we treat the problem as a multi-agent planning
problem where individual agents are self-interested
and will scrutinize their given plans carefully. There-
fore, instead of seeking for a globally optimal plan, we
focus on identifying a Nash equilibrium where indi-
vidual agents cannot improve their current utilities by
deviation.

Formally speaking, this multi-agent TOP is modeled
as a game, where players are agents, player’s strategy
space is the set containing all possible routes, and the
payoff function is the mapping from a joint strategy
(routes from all players) to a vector of payoff values
for all players. If a particular joint strategy is infeasible
(e.g., if queue lengths at some service providers violate
the capacity constraints), all players will receive the
value of −∞.

For any normal-form game, the existence of mixed
strategy Nash equilibrium is guaranteed, but pure strat-
egy Nash equilibrium does not always exist (see for in-



AUTHOR  C
OPY

C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints 349

stance [19]). While the complexity of finding a mixed
Nash equilibrium in an n-player game is still unknown,
computing a mixed Nash equilibrium in a 2-player
game is PPAD-complete [7]. For the case of pure strat-
egy Nash equilibrium, determining its existence in a
graphical game (a special case of normal-form game)
is NP-complete [10]. From the computational perspec-
tive, it has been shown that finding pure strategy Nash
equilibrium is only possible in fairly small games (e.g.,
even for 5-player, 5-strategy games, it may takes hours
and sometimes days to solve). The classical approach
for finding Nash equilibrium in a 2-player game is the
pivot-based Lemke-Howson algorithm [16]. More re-
cently, a mixed integer programming formulation is
also proposed for solving 2-player normal-form games
[21]. In cases where payoff matrix is large and com-
plete characterization is computationally intractable
(e.g., each payoff value can only be estimated by run-
ning multiple time-consuming simulations), the focus
has been on computationally tractable approaches in
approximately finding equilibria (e.g., see Wellman
et al. [29] and Jordan et al. [11]) without complete pay-
off matrix.

Finally, most previous works on OP are static in that
the network parameters (such as travel times and node
delays) remain constant over time. This is another ma-
jor feature that distinguishes our work from the litera-
ture. In the problem we are about to describe, we allow
queueing times at service providers to be dependent on
the number of visitors showing up in the same time
period. As such, the time required to receive service
from a particular provider would depend on not just
this agent’s strategy, but also other agents’ strategies.

3. Problem formulation

3.1. A motivating example

To understand why a game-theoretic framework
would be necessary for MOPTCC, let’s start with a
simple example to illustrate the inadequacy of global
optimum in a multi-agent environment. Consider the
following two-agent, two-provider problem: Let n0 be
the designated starting and ending nodes, and let n1

and n2 represent two providers. We assume that both
agents start their trips from n0 at time 1 and they have
to return to n0 again on or before time 5. The travel
time between any two nodes is 1. For each provider,
it can only serve one agent at a time, and its service
time is 1 time unit. If multiple agents request service

Table 1
Agents’ time-dependent utilities at different providers

t Agent 1 Agent 2
n1 n2 n1 n2

1 1 2 3 1
2 1 2 3 1
3 2 3 3 1
4 2 3 5 2
5 2 3 5 2

Table 2
Payoff matrix for all joint decisions

Agent 2
n1 n2

Agent 1 n1 2, 5 2, 1

n2 3, 3 −∞, −∞

from the same provider simultaneously, we assume
that agents are to be served one after another according
to their ID numbers. We further assume that the queue-
ing policy is set to allow provider n2 to handle at most
one agent at a time (i.e., no queueing allowed) and no
limit for provider n1. Finally, we assume that agents
collect their utilities when they finish their services at
the provider.

Agents’ time-dependent utilities for receiving ser-
vices from the two providers are listed in Table 1.

Based on the above setup, we can see that due to the
time limit constraint, each agent can choose at most
one provider before returning to n0. The outcomes re-
sulting from agents’ joint decisions are summarized as
the payoff matrix in Table 2. Note that for the joint
decision (n1, n1), both agents would arrive at n1 in
time 2, with Agent 1 receiving service first, followed
by Agent 2. Agent 1 would leave n1 in time 3 and re-
ceives the value of 2 (according to Table 1); for Agent
2, he begins his service in time 3, and leaves n1 in time
4, receiving the value of 5. For (n1, n2) and (n2, n1),
since there are no conflict, the corresponding payoff
values can be directly found in row (t = 3) of Table 1.
(n2, n2) is infeasible since provider n2 can handle at
most 1 agent (i.e., no queueing is allowed for n2).

From Table 2, we can see that the global optimum
is (n1, n1), with combined value 7. However, this so-
lution is not stable, as Agent 1 would be better off
by deviating from n1 to n2. In fact, the joint strategy
(n2, n1), with combined value 6, is a Nash equilib-
rium.

This is a classical demonstration where selfish
agents would deviate from the globally optimal solu-



AUTHOR  C
OPY

350 C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints

tion and opt for Nash equilibria with lower combined
payoff. In this instance, there are two major factors
contributing to such phenomenon: (1) agents have their
respective time-dependent payoffs, and (2) providers
handle agents sequentially, and individual providers
might be given different limits on queue lengths.

3.2. Centralized formulation

Although global optimum is not very meaningful for
MOPTCC, as argued earlier, we should still present the
centralized formulation first. This centralized formula
can serve as the comparison baseline, and it is also an
important subproblem to be solved repetitively when
we introduce the game-theoretic formulation.

The MOPTCC is derived from the classical single-
agent orienteering problem, where n providers (nodes)
are assumed to be fully connected and can be repre-
sented as a complete graph with tij denoting travel
time from i to j. We assume that there are m inde-
pendent agents, and let stik be the utility agent k re-
ceives when visiting node i in time t. The service
time at provider d is a constant vd, and the number
of agents allowed to simultaneously visit provider d
is capped at Qmax

d . The horizon of the problem is
set to be T time periods. Without loss of generality,
we assume that each agent k starts his trip at node 1
in time T k

1 and should end his trip at node n before
time T k

n (nodes 1 and n can either be real or dummy
nodes).

3.2.1. Integer linear programming formulation
With these notations and assumptions, we can then

formulate a centralized optimization problem as an in-
teger linear program.

Let xt
ijk be the binary decision variable which is

set to 1 if agent k leaves node i at time t and goes to
node j, and 0 otherwise. Let Qt

d denotes the number of
agents visiting node d at time t. We first define the ob-
jective function to maximize the combined utility re-
ceived by all agents:

max
T∑

t=1

m∑
k=1

n∑
i=1

n∑
j=1

stik xt
ijk. (1)

The first set of constraints ensure that for each agent k,
he starts at node 1 and ends at node n:

T∑
t=1

n∑
j=1

xt
1jk =

T∑
t=1

n∑
i=1

xt
ink = 1, ∀k. (2)

Equation (3) guarantees that flows are conserved at all
nodes except the origin (node 1) and the destination
(node n):

T∑
t=1

n∑
i=1

xt
idk =

T∑
t=1

n∑
j=1

xt
djk, ∀k, d �= 1 or n. (3)

As in all classical OP, we assume that for each agent k,
each node d is visited at most once:

T∑
t=1

n∑
j=1

xt
djk ≤ 1. (4)

Equation (5) defines the queue length for each node d
at time t. For simplicity, we assume that service rate is
1 at all nodes. Thus Qt

d equals the queue length from
time t−1 plus the inflow and minus the outflow of cur-
rent time t for this node. Equation (6) ensures that the
queue length Qt

d should not exceed its corresponding
threshold Qmax

d at all times. Both Eqs (5) and (6) are
defined for all d and t.

Qt
d = Qt−1

d +

m∑
k=1

(
n∑

i=1

xt−tid
idk −

n∑
j=1

xt
djk

)
, (5)

Qt
d ≤ Qmax

d . (6)

In Eq. (7), the arrival and departure times for agent k
at node d are constrained by taking into account all
potential delays such as service time, queue length at
arrival, and travel time.

T∑
t=1

n∑
i=1

(
t+ tid +Qt+tid

d + vd
)
xt
idk

=
T∑

t=1

t

(
n∑

j=1

xt
djk

)
. (7)

Finally, Eqs (8) and (9) ensure that for each agent k,
the schedule starts at T k

1 and ends before T k
n .

T∑
t=1

n∑
j=1

t · xt
1jk = T k

1 , (8)

T∑
t=1

n∑
j=1

t · xt
njk ≤ T k

n . (9)

By expanding Eq. (5) recursively, it can be rewritten
as Eq. (10).



AUTHOR  C
OPY

C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints 351

Qt
d = Q1

d +

m∑
k=1

n∑
i=1

t−tid∑
s=2−tid

xs
idk

−
m∑

k=1

n∑
j=1

t∑
s=2

xs
djk, ∀d, t. (10)

When substituting Qt
d in Eq. (7) with (10), there are

non-linear terms. To linearize these non-linear con-
straints, we introduce αst

ijdlk to represent xs
jdl ·xt

idk and
βst
ijdlk to replace xs

djl · xt
idk. After the transformation,

Eq. (7) is replaced by Eqs (11)–(13).

T∑
t=1

n∑
j=1

t · xt
djk =

T∑
t=1

n∑
i=1

(t+ vd + tid)x
t
idk

+

T∑
t=1

n∑
i=1

m∑
l=1

n∑
j=1

t∑
s=2−tid

αst
ijdlk

−
T∑

t=1

n∑
i=1

m∑
l=1

n∑
j=1

t+tid∑
s=2

βst
ijdlk, ∀d, k, (11)

⎧⎪⎨
⎪⎩
αst
ijdlk ≤ xs

jdl,

αst
ijdlk ≤ xt

idk,

αst
ijdlk ≥ xs

jdl + xt
idk − 1,

∀i, d, j, k, l, s, t, (12)

⎧⎪⎨
⎪⎩
βst
ijdlk ≤ xs

djl,

βst
ijdlk ≤ xt

idk,

βst
ijdlk ≥ xs

djl + xt
idk − 1,

∀i, d, j, k, l, s, t. (13)

After linearization, the above mathematical program-
ming model can then be solved by using standard
integer linear programming solver such as CPLEX.
However, such formulation does not scale well and
only very small instance can be solved [6]. In this
work, our focus is to solve MOPTCC as a game,
and the above formulation can be revised to solve
a single-agent version of the problem. Before intro-
ducing the equilibrium-seeking algorithm, we will
first model the problem using game-theoretic frame-
work.

3.3. A game-theoretic formulation for MOPTCC

The MOPTCC game is defined as the tuple Γ =

〈K,S, u〉, where K = {1, . . . ,m} is the set of all play-
ers (agents), S = S1 × . . . × Sm is the joint strategy
space, and u : S → Rm is the payoff function. When
not considering S−k, player k’s strategy space is de-

fined as:

Sk =
{(

s1k, . . . , s
n
k

)
|sik ∈ {1, . . . , n}, ∀i;

s1k = 1; ∃d, sdk = n,

for 1 < i < d, sik /∈
{
s1k, . . . , s

i−1
k

}
,

for d < i ≤ n, sik = 0
}
. (14)

In other words, a player’s strategy must always begin
with node 1, end with node n, never repeat, and if the
visit sequence is shorter than n, all visits after node n
must be no-op, which is denoted as 0.

Given any joint strategy profile s, we can straight-
forwardly compute the corresponding Qt

d for all pairs
of (t, d). We say that a joint strategy s ∈ S produces
feasible joint orienteering plan if the resulting Qt

d does
not exceed Qmax

d for all pairs of (t, d). The utility func-
tion u is only defined for strategies that produce fea-
sible joint orienteering plans. If a joint strategy s pro-
duces infeasible plan, we defined uk(s) to be −∞ for
all players.

As the MOPTCC game is defined as a normal-form
game, all joint strategies can be played. However, due
to the feasibility condition defined above, only a small
fraction of strategies should ever be considered. As
such, the next challenge we have to address would
be to devise an algorithm that can effectively and ef-
ficiently identify feasible equilibria of the MOPTCC
game.

4. A fictitious play-based algorithm for finding
pure Nash equilibria

As reviewed in Section 2, even for a very sim-
ple game that contains only two players, it can be
very computationally challenging to compute equi-
librium solutions. As the number of players and the
size of strategy space increase, the complexity of the
equilibrium-seeking would increase quickly. In the
MOPTCC game, the critical challenge is the size of
the strategy space. In fact, as in the usual orienteering
problem, the size of the strategy space grows exponen-
tially as the number of destinations increases (e.g., for
problem with n destinations, the size of the strategy
space is in the order of n!). Because of this, most tra-
ditional enumeration-based equilibrium seeking tech-
niques (e.g., the well-known Lemke-Howson [16] al-
gorithm) will not be effective, and we have to find al-
ternatives.

One computational approach that shows promise in
dealing with the strategy space explosion is the fic-



AUTHOR  C
OPY

352 C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints

titious play algorithm, which is originally proposed
by Brown [3] and later adopted by researchers in
operations research and computer science in dealing
with either centralized or decentralized planning prob-
lems. Without going into technical details, we can
view fictitious play algorithm as a way for players
to learn about how to anticipate other players’ re-
sponses, so that proper strategy can be selected. The
strength of the fictitious play is its simplicity, and it’s
known that if potential function can be defined for
the game in interest, the fictitious play algorithm will
converge [17]. Important classes of games that pos-
sess such property include games with identical inter-
ests (the team game) and a wide variety of congestion
games.

Unfortunately, the original fictitious play algorithm
has a number of undesirable properties, both theoret-
ically and computationally. First, the equilibrium that
the fictitious play algorithm could converge to (if the
convergence is possible) is in mixed form, since the
convergence results are all established on the belief
distribution (which is probabilistic in nature). Second,
in each iteration of the fictitious play algorithm, all
players need to compute their best responses against
the current belief distribution, which potentially may
contain a big chunk of the original joint strategy space.
This implies that the evaluation of best responses
(which is based on expected) might be exponential as
well.

To address the second issue, Lambert III et al. [15]
have introduced the idea of sampling to the evaluation
of best responses: instead of evaluating against all pos-
sible combinations from the history in the belief distri-
bution, a small number (in most cases, only one sam-
ple is needed) of joint strategies will be sampled, and
the best response will be computed against these sam-
ples. Lambert III et al. [15] proved that this sampled
fictitious play (SFP) will converge in belief to equilib-
rium for games of identical interests. They then use
this result to solve large-scale unconstrained discrete
optimization problems as games using SFP.

We will adopt the similar sampling idea in our
first attempt to solve the MOPTCC game. However,
as we are looking to generate recommendations for
agents with heterogeneous preferences (represented in
the form of payoff function), we will focus on find-
ing pure strategy equilibria instead. As the existence
of pure strategy equilibrium is not guaranteed in gen-
eral, and we cannot prove it analytically due to the
complexity of the formulation, we will use a wide va-
riety of computational experiments to explore whether

Algorithm 1 Sampled fictitious play algorithm for
MOPTCC games.

1: Input: (Γ, kmax)
2: Output: BNE
3: B ← INITIALSOLUTIONS()
4: H ← UPDATEHISTORY({},B)
5: k ← 1
6: while k <= kmax do
7: D ← SAMPLE(H, k)
8: for each agent i do
9: Q−i ← AGGREGATEQUEUES(D−i)

10: (Bi, δi) ← BESTRESPONSE(Γ,Q−i)
11: end for
12: H ← UPDATEHISTORY(H,B)
13: if maxi δi = 0 then
14: BNE ← APPEND(BNE,B)
15: k ← k + 1
16: end if
17: end while
18: Return: BNE

this is something that is achievable for the MOPTCC
game.

4.1. Sampled fictitious play algorithm

In Algorithm 1, we define a variant of the SFP algo-
rithm used in solving MOPTCC game. The major new
features we implement are: (1) the handling of infeasi-
ble samples, which based on our earlier definition refer
to joint strategies that would result in over-capacitated
destination; and (2) focus on identifying pure strategy
equilibrium when executing the SFP algorithm.

Algorithm 1 is a simplified skeleton that hides most
implementation complexity. To start the algorithm, we
first randomly generate joint strategy that is feasible by
calling INITIALSOLUTIONS() in line 3. This initial so-
lution is then used to initiate the history (i.e., the be-
lief distribution). The iteration then begins, in which
a feasible joint strategy is to be sampled at the begin-
ning of the iteration in line 7. The tighter the capac-
ity constraint, the more difficult it is in sampling a fea-
sible joint strategy. However, as the initial joint strat-
egy is feasible, we can always find such sample. With
a feasible sample joint strategy, we then solve each
agent’s best response problem as a mathematical pro-
gram, which is to be defined later. Note that when the
best response is computed in line 10, congestions at
all destinations (Q−i) are determined by other players’
joint strategy (D−i) in line 9. When computing the best



AUTHOR  C
OPY

C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints 353

response, another information we get is the individual
deviation δi, which refers to the improvement made
by choosing the best response. If δi is 0, it implies
that player i cannot benefit from unilaterally deviating
from the sampled strategy. If maxi δi is 0, no player
can benefit from their deviations, and D is a pure strat-
egy equilibrium. Whenever we find such solution, we
will store it in the output set (note that in practice we
will store all relevant information such as utility and
congestion besides just the equilibrium strategy).

In the next two subsections, we will explain how we
generate random initial solutions, how do we compute
best responses using mathematical programming ap-
proach.

4.2. Generating feasible initial solution

The initial solutions are generated using a simple
greedy approach in INITIALSOLUTIONS(). We detail
the used greedy approach as follows:

1. Initialize the congestion {Qt
d} to be 0 for all

(t, d) pairs.
2. Choose any player k who doesn’t have an itiner-

ary yet.
3. For this agent, randomly choose one destination

at a time, assuming that the current congestion is
{Qt

d}. We use rejection-base sampling: choosing
all unvisited destinations with equal chance, and
if the chosen destination d is at its capacity at the
estimated arrival time t, another destination will
be drawn.

4. For each agent, we would artificially reduce its
time budget by 50%. This is to approximately
factor in the potential impact of this agent’s deci-
sion on other agents’ increased wait time. Based
on our computational experience, this damping
factor can significantly improve the likelihood of
us getting feasible decisions. Depending on the
number of players and the problem parameters,
different damping factors might be appropriate.
Our computational study on 5-agent instances is
summarized in Fig. 5 in the Appendix.

5. After we have exhausted player k’s time budget,
we fix player k’s itinerary and update {Qt

d}.
6. If the set of free players is not empty, go to Step 2

and repeat.

We first generate initial solutions without artificially
reducing player’s time budget, but we soon find out
that for problems with tight capacity constraints, ini-
tial solutions generated with all players spending most

of their time budgets will result in joint solutions that
are almost impossible to improve upon. In these cases,
time budget reduction in Step 4 is shown to be very
effective in improving the efficiency of the algorithm
(intuitively speaking, Step 4 allows us to reserve buffer
time in the schedule generated).

4.3. Computing best responses

An agent’s best response in the MOPTCC game can
be computed using an ILP model very similar to the
one introduced in Section 3.2, Eqs (1)–(9). There are
two major differences:

– The k index which represents different agent
identities can be dropped. E.g., the decision vari-
able will become only xt

ij .
– All other agents’ chosen strategies, which are

taken from the sampled joint strategy, will col-
lectively decide the background queue length. We
define Qinput

dt to be the background queue length
built up by other agents at node d in time t.

Most constraints will stay the same except Eqs (5)
and (7). These two sets of constraints will be rewritten
as:

Qt
d = Qinput

dt +

n∑
i=1

xt−tid
id , ∀d, t, (15)

T∑
t=1

n∑
i=1

(
t+ tid +Qinput

d,t+tid
+ vd

)
xt
id

=

T∑
t=1

t

n∑
j=1

xt
dj , ∀d. (16)

Since Qinput
dt is provided as problem data, the constraint

is already linear and requires no linearization. Together
with the fact that index k is dropped, the problem be-
comes much more tractable, and can be solved reason-
ably fast in our computational study.

5. Computational experiments

In this section, we evaluate how effective our SFP
variant is in finding pure strategy equilibrium. All the
instances used in this section are generated randomly
using our MOPTCC instance generator. The run times
reported below are measured on machines running
3.16 GHz Intel Xeon CPU X5460 with 16 GB RAM.



AUTHOR  C
OPY

354 C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints

Table 3
Results for equilibria found on per-instance bases. For smaller instances (2-agent and 5-agent cases), each instance is solved by executing SFP
algorithm for 20 iterations. For larger instances (8-agent), we execute SFP algorithm for 50 iterations. Note that all mentions of equilibria refer
to pure strategy equilibria

(m,n, T ) (2, 10, 10) (2, 10, 10) (5, 10, 10) (5, 10, 10) (8, 10, 10) (8, 10, 10)

Instance Type tight loose tight loose tight loose
Total instances 25 25 25 25 25 25
Success rate of finding equilibria 100% 100% 100% 100% 100% 100%
Avg. # of equilibria found 267.88 256.08 79.12 66.92 44.96 20.35
Avg. # of distinct equilibria found 17.88 17.76 61.4 52.64 31.68 14.00
Best equilibrium / Best feasible 100% 100% 99.94% 99.97% 98.71% 98.98%
Avg. computational time(s) 114.24 172.43 337.08 439.14 3466.80 9913.22

5.1. Data generation

Numerical instances in our computational study are
characterized by the tuple: (m, n, T , type), where m, n,
T denote the number of agents, the number of nodes,
and the number of time periods respectively. The fi-
nal parameter, type, refers to the tightness of the in-
stance, which can be either loose or tight. The tightness
of the instance affects how node capacities (Qmax

d ) are
drawn. For loose instances, capacities are drawn from
discrete uniform distribution between (p · m) and m;
for tight instances, capacities are drawn from discrete
uniform distribution between 1 and (p ·m). In both in-
stances, p is set to a constant between 0 and 1. In all
our experiments, p is set to 0.5.

The utility value for agent k to visit node i in time t,
stik, is assumed to be uniformly distributed between 1
to 5. The only exceptions are the start and end nodes,
st1k and stnk, whose values are both set to be 5. Finally,
all travel times (tij between nodes i and j) and service
times (vd for node d) are set to 1 for simplicity.

For our computational experiments presented in this
section, we generate six categories of instances, with
parameters m ∈ {2, 5, 8}, n = 10, T = 10, and
type ∈ {loose, tight}. 25 random instances are gen-
erated for each category. To avoid being trapped in
unpromising joint strategy subspace and increase the
likelihood of finding pure strategy equilibrium, each
instance is independently solved for 20 times, each
time with a randomly generated initial solution (fol-
lowing steps introduced in Section 4.2).

5.2. Numerical results

For smaller instances (2-agent and 5-agent cases),
each instance is solved by executing SFP algorithm for
20 iterations. For larger instances (8-agent), we exe-
cute SFP algorithm for 50 iterations so that better solu-

tion might be found. The performance of our SFP vari-
ant in finding pure strategy equilibria is summarized in
Table 3. As we can see from Table 3, SFP can identify
large amount of high-quality pure strategy equilibria
for smaller instances (2-agent and 5-agent cases) very
quickly. When the problem expands to have 8 agents,
we can see that it’s drastically more difficult to find
pure strategy equilibria (measured by both the compu-
tational time and the number of pure strategy equilib-
ria found). Another interesting finding is that loose in-
stances are much more difficult to solve than tight in-
stances for all numbers of agents, probably because of
greater degree of freedom we have (number of feasi-
ble joint strategies would be much larger when the ca-
pacity constraints are loose, and agents would have a
more difficult time in producing coordinated actions as
a result). We also compute the ratio between the best
pure strategy equilibrium and the best feasible solu-
tion found for each instance. We can see that the ra-
tio is reasonably high for all instances. This is an en-
couraging computational result, as it’s well known that
the adhering to Nash equilibria might cause significant
drop in social welfare (e.g., see Roughgarden and Tar-
dos [20]’s work on quantifying the price of anarchy
in the routing domain, i.e., the sacrifice one needs to
endure for implementing Nash equilibrium solution).

Another interesting way to visualize the growing
of computational complexity in finding pure strategy
equilibrium is to plot the histogram of agents’ maxi-
mal deviations in all iterations. Intuitively speaking, if
we have lots of cases with 0 deviation, it implies that
it’s easy to identify pure strategy equilibrium (when
the maximal deviation is 0 among all players in any it-
eration, it implies that a pure strategy equilibrium has
been found, since no agent can benefit from deviat-
ing unilaterally). Not surprisingly, with the number of
agents increasing, the performance of the algorithm
takes a hit and the frequency of zero deviation should



AUTHOR  C
OPY

C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints 355

Fig. 1. Max deviations of 2-agent, 5-agent, and 8-agent instances.

decrease. The plots in Fig. 1 confirm our speculation.
Besides steady decrease in zero-deviation cases, the
distribution of deviations also gradually shifts to the
right hand side, indicating greater difficulty in reaching
coordinated outcomes. The instances with loose capac-
ity constraints also consistently have fatter tails to the
right, indicating that it’s more difficult to identify equi-
librium in general for loose instances.

In terms of utility value improvement, the SFP al-
gorithm progresses very quickly. In Fig. 2 we can ob-
serve the average progress of the SFP algorithm over
the iteration, with error bars at +1 and −1 standard de-
viation. As illustrated in Fig. 2, we can see that most
of the progress is made at the early iterations, after
which the algorithm settles down quickly, with stable
values and very low standard deviations. This execu-
tion pattern is also consistent with prior research in us-
ing SFP algorithm for large-scale discrete optimization

Fig. 2. The average progress of SFP algorithm over iterations for a
sample instance with random restarts (the error bar is one standard
deviation over all random restarts of this instance).

(e.g., see [9]). Do note that Fig. 2 is relative; when we
have larger number of agents, it’s expected that more



AUTHOR  C
OPY

356 C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints

Fig. 3. Maximal equilibrium utility value for 5-agent instances: 25 tight instances (left) and 25 loose instances (right). X-axis denotes individual
instances. Y-axis represents the maximum utility value of the equilibrium solutions discovered for that instance.

Fig. 4. Maximal deviations for selected 8-agent (left) and 10-agent (right) instances with random restarts. Each line represents a different
random restart. X-axis denotes iterations, Y-axis denotes the maximal deviation maxi δi. A deviation δi for player i can be viewed as the utility
improvement made by choosing the best response. If maxi δi is 0, a pure strategy equilibrium is found, i.e., no player can benefit from unilateral
deviation. Setting: (m,n, T ) = (m, 10, 10).

iterations would be necessary, however, the pattern im-
provement would resemble what is illustrated here.

5.3. Comparison against baseline algorithm:
Coordinate descent

To understand whether the SFP algorithm we use for
MOPTCC indeed has its merits, we compare it against
a popular baseline algorithm called the Coordinate De-
scent (CD) algorithm (similar CD algorithm has also
been compared to the SFP algorithm in other domains,
such as the coordinated traffic signal control [8]). The
CD algorithm is a simple yet effective algorithm for
solving large-scale discrete optimization (despite its
simplicity, it’s shown to work well in practice and in
theory [24]). In the MOPTCC domain, it executes as
follows: the CD algorithm would start from any player,
for whom a best response against the current solution
is computed and this best response will then be used

to replace this player’s current strategy. The CD algo-
rithm then move on to the next player and repeat the
above procedures. The CD algorithm would terminate
either after no further improvement can be made af-
ter we have iterated through all agents or the computa-
tional time is up.

The comparison between the CD algorithm and the
SFP algorithm is conducted for our 5-agent instances,
with results plotted in Fig. 3. From the figure we can
see that the SFP algorithm is at least as good as the CD
algorithm, and for some instances the SFP algorithm
managed to greatly outperform the CD algorithm.

Finally, we extend our experiments to 8-agent and
10-agent instances, running 50 iterations of SFP algo-
rithm. As shown in Fig. 4, the number of iterations
needed to find a equilibrium increases with the num-
ber of agents. In the 2-agent and 5-agent cases, SFP
is able to find equilibrium within 20 iterations. For
the 8-agent and 10 agent cases, equilibrium is sel-



AUTHOR  C
OPY

C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints 357

Fig. 5. Comparison for different time budget discount ratios for 5-agent instances: (m,n, T ) = (5, 10, 10).

dom reached within the first 20 iterations and most
equilibria are found by the second half of 50 itera-
tions.

6. Conclusions and future work

In this paper, we introduce a new variant of the OP,
referred as the Multi-agent Orienteering Problem with
Time-Dependent Capacity Constraints (MOPTCC). It
can be used as the starting point for modeling many
combinatorial optimization problems which involve
time-dependent capacity constraints; e.g., it can be ap-
plied to crowd management in leisure settings, where
controlling queue lengths for various attractions is of
vital concern to the operator.

To this end, we first propose a centralized model
using integer linear programming formulation. Due
to the distributed nature of the problem, we refor-
mulate it in the game-theoretic framework, and we
propose to use the sampled fictitious play algorithm
(SFP) which is shown to be computational efficient in
identifying pure strategy equilibrium. By introducing
rejection-base sampling in the fictitious play iteration,
we are able to deal with computational intractability
and also the feasibility requirement we impose on the
MOPTCC game, which is to require all capacity con-
straints be observed at all times.

Our initial computational experiments show great
promises, as we are able to find pure strategy equi-
librium in all the randomly generated instances for 2-
agent, 5-agent, and 8-agent MOPTCC games. Our im-
mediate next step is in trying to theoretically prove the
existence of pure strategy equilibrium for MOPTCC
games. We are also interested in further improving the
computational approach so that it can scale to even
larger instances.

Acknowledgment

This research is supported by the Singapore Na-
tional Research Foundation under its International Re-
search Centre @ Singapore Funding Initiative and ad-
ministered by the IDM Programme Office.

Appendix

The impact of using different time budget discount
ratios is illustrated in Fig. 5. We can clearly see that
more aggressive time budget reduction directly leads
to fewer number of re-samplings. The best utility value
from discovered equilibrium solutions also improves a
bit with higher time budget discount ratios.

References

[1] C. Archetti, A. Hertz, and M. Grazia Speranza, Metaheuristics
for the team orienteering problem, Journal of Heuristics 13(1)
(2007), 49–76.

[2] S. Boussier, D. Feillet and M. Gendreau, An exact algorithm
for team orienteering problems, 4OR: A Quarterly Journal of
Operations Research 5(3) (2007), 211–230.

[3] G.W. Brown, Iterative solution of games by fictitious play, Ac-
tivity Analysis of Production and Allocation 13(1) (1951), 374–
376.

[4] S.E. Butt and T.M. Cavalier, A heuristic for the multiple tour
maximum collection problem, Computers & Operations Re-
search 21(1) (1994), 101–111.

[5] I.-M. Chao, B.L. Golden and E.A. Wasil, The team orienteer-
ing problem, European Journal of Operational Research 88(3)
(1996), 464–474.

[6] C. Chen, S.-F. Cheng and H.C. Lau, The multi-agent orien-
teering problem, in: Tenth Metaheuristics International Con-
ference, Singapore, August 2013.

[7] X. Chen and X. Deng, Settling the complexity of two-
player nash equilibrium, in: Foundations of Computer Science
(FOCS), 2006.



AUTHOR  C
OPY

358 C. Chen et al. / Multi-agent orienteering problem with time-dependent capacity constraints

[8] S.-F. Cheng, M.A. Epelman and R.L. Smith, CoSIGN: A paral-
lel algorithm for coordinated traffic signal control, IEEE Trans-
actions on Intelligent Transportation Systems 7(4) (2006),
551–564.

[9] A. Ghate, S.-F. Cheng, S. Baumert, D. Reaume, D. Sharma and
R.L. Smith, Sampled fictitious play for multi-action stochas-
tic dynamic programs, IIE Transactions 46(7) (2014), 742–
756.

[10] G. Gottlob, G. Greco and F. Scarcello, Pure nash equilibria:
Hard and easy games, Journal of Artificial Intelligence Re-
search (2003), 215–230.

[11] P.R. Jordan, Y. Vorobeychik and M.P. Wellman, Searching for
approximate equilibria in empirical games, in: Seventh Inter-
national Joint Conference on Autonomous Agents and Multia-
gent Systems, 2008, pp. 1063–1070.

[12] M.G. Kantor and M.B. Rosenwein, The orienteering problem
with time windows, The Journal of the Operational Research
Society 43(6) (1992), 629–635.

[13] L. Ke, C. Archetti and Z. Feng, Ants can solve the team ori-
enteering problem, Computers & Industrial Engineering 54(3)
(2008), 648–665.

[14] N. Labadie, J. Melechovskỳ and R. Wolfler Calvo, Hybridized
evolutionary local search algorithm for the team orienteer-
ing problem with time windows, Journal of Heuristics 17(6)
(2011), 729–753.

[15] T.J. Lambert III, M.A. Epelman and R.L. Smith, A ficti-
tious play approach to large-scale optimization, Operations Re-
search 53(3) (2005), 477–489.

[16] C.E. Lemke and J.T. Howson, Jr., Equilibrium points of bi-
matrix games, Journal of the Society for Industrial & Applied
Mathematics 12(2) (1964), 413–423.

[17] D. Monderer and L.S. Shapley, Potential games, Games and
Economic Behavior 14(1) (1996), 124–143.

[18] R. Montemanni and L. Gambardella, Ant colony system for
team orienteering problems with time windows, Foundations
of Computing and Decision Sciences 34(4) (2009), 287–306.

[19] C. Papadimitriou, Algorithms, games, and the internet, in:
Symposim on Theory of Computing (STOC), 2001, pp. 749–
753.

[20] T. Roughgarden and E. Tardos, How bad is selfish routing?
Journal of ACM 49(2) (2002), 236–259.

[21] T. Sandholm, A. Gilpin and V. Conitzer, Mixed-integer pro-
gramming methods for finding nash equilibria, in: National
Conf. on Artificial Intelligence (AAAI)), 2005.

[22] W. Souffriau, P. Vansteenwegen, G. Vanden Berghe and
D. Van Oudheusden, A path relinking approach for the
team orienteering problem, Computers & Operations Research
37(11) (2010), 1853–1859.

[23] H. Tang and E. Miller-Hooks, A tabu search heuristic for the
team orienteering problem, Computers & Operations Research
32(6) (2005), 1379–1407.

[24] P. Tseng, Convergence of a block coordinate descent method
for nondifferentiable minimization, Journal of Optimization
Theory and Applications 109(3) (2001), 475–494.

[25] T. Tsiligirides, Heuristic methods applied to orienteering, The
Journal of the Operational Research Society 35(9) (1984),
797–809.

[26] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe and
D. Van Oudheusden, A guided local search metaheuristic for
the team orienteering problem, European Journal of Opera-
tional Research 196(1) (2009), 118–127.

[27] P. Vansteenwegen, W. Souffriau, G. Vanden Berghe and
D. Van Oudheusden, Iterated local search for the team orien-
teering problem with time windows, Computers & Operations
Research 36(12) (2009), 3281–3290.

[28] P. Vansteenwegen, W. Souffriau and D. Van Oudheusden, The
orienteering problem: A survey, European Journal of Opera-
tional Research 209(1) (2011), 1–10, ISSN 0377-2217.

[29] M.P. Wellman, D.M. Reeves, K.M. Lochner, S.-F. Cheng and
R. Suri, Approximate strategic reasoning through hierarchical
reduction of large symmetric games, in: Twentieth National
Conference on Artificial Intelligence, 2005, pp. 502–508.


