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Abstract

In this work, we investigate a multi-period Home Health
Care Scheduling Problem (HHCSP) under stochastic service
and travel times. We first model the deterministic problem
as an integer linear programming model that incorporates
real-world requirements, such as time windows, continuity
of care, workload fairness, inter-visit temporal dependencies.
We then extend the model to cope with uncertainty in du-
rations, by introducing chance constraints into the formula-
tion. We propose efficient solution approaches, which pro-
vide quantifiable near-optimal solutions and further handle
the uncertainties by employing a sampling-based strategy. We
demonstrate the effectiveness of our proposed approaches on
instances synthetically generated by real-world dataset for
both deterministic and stochastic scenarios.

Introduction
Home health care provides a wide range of health care ser-
vices that are delivered at patients’ homes. These medical
services range from cleaning, personal hygiene to adminis-
tering some medical treatments, such as blood pressure tests,
prescriptions, injections and so on. Over the past decade,
an increasing number of people subscribe to home health
care services, especially for patients with chronic condi-
tions to minimize cost and maximize the quality of life. Ac-
cording to the US National Association for Home Care &
Hospice (2010), roughly 12 million people received home
health care services from 33,000 providers in 2008. This
number is set to grow rapidly with an increasing aging pop-
ulation: Population Reference Bureau (2016) predicts that
“the number of Americans above 65 will increase from 46
million in 2016 to over 98 million by 2060”. Against the
manpower crunch in health-care professionals, in-home ser-
vice providers are under increasing pressure to provide high-
quality service at a low cost to an ever growing demand.

Home health care services comprise a complex set of
processes requiring significant coordination among health
care providers. An important task for health care providers
is to achieve a high service level, i.e, satisfy as many pa-
tients’ needs as much as possible, in a cost efficient man-
ner. However, many home health care companies still rely
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on health care providers to individually coordinate with pa-
tients, which is very inefficient, and often myopic as it is not
well coordinated among health care providers. With the in-
crease service demand, more and more time is being spent
in the coordination processes, resulting in less time available
for services. For example, the Palliative Care Department at
West Pennsylvania Hospital reports that it takes an hour a
day to schedule that day’s services, significantly reducing
the time health care providers can spend addressing patients’
needs. Thus, it is critical for health care providers to increase
the efficiency of the scheduling processes, more precisely, to
design a better automated mechanism, that schedules visits
in optimized fashion subject to a complex set of constraints.

In the literature, a considerable amount of problem spe-
cific systems have been developed for home health care
settings across the world. For example, Begur, Miller, and
Weaver (1997) first developed a spatial decision support sys-
tem for Visiting Nursing Association in the United States to
minimize total travel time, taking into consideration of rout-
ing, provider availabilities, and fixed visitation frequencies.
Eveborn, Flisberg, and Rönnqvist (2006) presented a single
day scheduling system, called LAPS CARE, for Swedish
health care system that maximizes the number of served re-
quests and considers time windows, skill requirements, and
breaks. We believe the existing systems/practices fell short
in the following two key aspects.

• Failure to address the uncertainties: Due to the vary-
ing health conditions of the patients as well as the expe-
rience of healthcare providers, the service durations can
have quite substantial variance. Figure 1 plots the means
and standard deviations of actual service durations over
one month of actual visit records grouped by different
service disciplines. We can see that service duration un-
certainty is clearly exhibited, where standard deviations
under all disciplines are larger than 10 minutes up to 30
minutes. In addition, unforeseen traffic conditions, such
as congestion, accidents, and breakdowns, often result in
varying travel durations, thus further complicates the pre-
diction of service start times. Faced with both types of du-
ration uncertainties, providers responsible for scheduling
are confronted with the dilemma of either over-estimating
duration times so as to guarantee services and travel and,
hence, under-utilizing their resources, or under-estimating
those times and, thus, short-changing patients by making



them wait for services. In any case, duration uncertainties
can potentially deteriorate patient satisfaction and result
in additional costs for the company.

• Insufficient business considerations: Existing auto-
mated scheduling systems differ significantly, as prob-
lems originate from different regions with various require-
ments and regulations. Fikar and Hirsch (2017) recently
presented a comprehensive survey on the home health
care problem. To the best of our knowledge, none of the
existing works completely addresses all the business re-
quirements raised by our problem.
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Figure 1: Means and standard deviations of service durations over
one-month visits grouped by different service disciplines. Note, the
statistics are summarized using one month of actual visit records of
Sept. 2015. Discipline specifies the type of service required, e.g.,
speech therapy, skilled nursing, physical therapy, to name a few.

To address these challenges, we propose to develop a
decision-support system for the efficient delivery of services
to patients at home, while tightly integrating both patients’
and providers’ preferences. In this paper, we focus on inves-
tigating a large-scale scheduling framework that generates
the start-of-the-day schedules, considering realistic scenar-
ios driven by our real-world needs, with a comprehensive
set of considerations for home health care settings, e.g., time
windows, continuity of care, workloads, inter-visit temporal
dependencies, and especially the duration uncertainties. Our
goal is to generate a set of routes for health care providers to
service visit that maximize the patients’ satisfaction.

We make the following key contributions in our paper.
First, we begin with developing a mathematical formulation
for the deterministic version of the problem as a baseline, to
handle various business requirements in home health care,
and ultimately present the robust version of the formulation
to cope with uncertainty in service/travel durations. Second,
we present scalable solution approaches to solve both the
deterministic and stochastic problems.

Related Work
The Home Health Care Scheduling Problem (HHCSP) is
the problem of scheduling and routing service providers to
visit patients at home. It was first mentioned by (Fernan-
dez et al. 1974), where community nurses are scheduled to
visits patients. Essentially, HHCSP instantiates some form
of workforce scheduling and routing problems. Castillo-
Salazar, Landa-Silva, and Qu (2016) review the workforce
scheduling and routing problem, not limited to the health

care industry and view the home health care as one of the
application domains. Other similar applications can also
be found in the technician scheduling, emergency services,
transportation systems, or call centers (Ernst et al. 2004;
Castillo-Salazar, Landa-Silva, and Qu 2016). Problems from
different domains share some commonality, and also differs
substantially in problem settings. Given a large amount of
literature, we focus on the research more related to our prob-
lem and heath care domain.

On the workforce scheduling aspect, literature on work-
force scheduling in health care domain mainly deals with
staff rostering requirements, such as skills, shifts, time-
related constraints, work regulations and ect (Burke et al.
2004; Rais and Viana 2011). On the routing aspect, vehi-
cle routing (Toth and Vigo 2014) and orienteering prob-
lems (Gunawan, Lau, and Vansteenwegen 2016) have long
been extensively studied to model various problems from
transportation and logistics. In literature, HHCSP is often
modeled as the vehicle routing problem (Fikar and Hirsch
2017), with assumption that the workforce is sufficient and
the goal is to cover all the requests with the minimal travel
costs or manpower. In our problem, however, the company
faces an oversubscribed situation, where the number of re-
quests received often exceeds its service capacity, especially
under the case when we care about patient preferences and
continuity of care. The current practice for the company is
to first schedule requests for full-time providers. Any uncov-
ered requests are then made up by a combination of either
extending the visits for full-time providers or outsourcing
to part-time providers. We are concerned with scheduling
full-time workforce with the objective to maximize patients’
satisfaction, measured in terms of rewards. Hence, the un-
derlying problem at stake is an orienteering problem rather
than a vehicle routing problem. Orienteering problem is mo-
tivated by scheduling score-orienteering events in which par-
ticipants get rewards from visiting a selected subset of nodes
within the time budget. We model the problem as a variant
of the team orienteering problem with time windows.

There is also a thread of research dedicated to home
health care. Fikar and Hirsch (2017) recently present a com-
prehensive survey on HHCSP. The majority of the related
works focuses on single-period problems, i.e., a single day
as scheduling horizon, and only few papers consider multi-
period ones, i.e., over multiple days. Our problem can be cat-
egorized as a multi-period HHCSP. The problem becomes
much more challenging and complicated when going into a
longer scheduling horizon, as the scheduling process involve
more complex assignments, regulations, and continuity of
care. Problems differ substantially due to different business
considerations. Time windows, qualifications, and provider
availabilities are commonly addressed in multi-period prob-
lems, while other aspects, such as workload fairness, conti-
nuity of care, inter-visit temporal dependencies are less in-
corporated, especially uncertainties (Fikar and Hirsch 2017).
Next, we focus on the multi-period HHCSP literature.

In multi-period HHCSP literature, there have been works
addressing the workload fairness as the objective function,
to minimize the workload difference among providers or
optimize utilization factors (Hertz and Lahrichi 2009; Bar-



rera, Velasco, and Amaya 2012; Cappanera and Scutellà ;
Errarhout, Kharraja, and Corbier 2016). Yuan and Fügen-
schuh (2015) handle the workload in the objective to mini-
mize daily working hours. In our problem, the company de-
sires a provider to service a minimum workload if possible
and overworking is not preferred. We model the minimum
workload as soft constraints as the penalty in the objective
function and maximum workload as hard constraints.

Considering the continuity of care, works by (Bachouch,
Guinet, and Hajri-Gabouj 2011; Carello and Lanzarone
2014) model it as hard constraints that require patients to
be visited strictly by the same providers over the schedul-
ing horizon, which is not flexible to a certain extent. Nickel,
Schröder, and Steeg (2012) try to minimize the sum of, over
all the providers, the different providers serving the same the
patient, while Rodriguez et al. (2015) allow a patient to be
visited by a maximum number of different service providers.
However, these providers are treated equally without priori-
ties. Lin et al. (2016) use five cases of hard weight allocation
criteria to enforce care continuity and incorporate priority.
Instead, we take a softer and flexible approach. Our objec-
tive is to maximize patients’ satisfaction, measured in terms
of rewards collected for serving the patients. The provider-
request dependent rewards give us the flexibility to reflect
the continuity of care with prioritized provider candidates
and to further capture requests’ information, such as type,
emergency or request priority.

Inter-visit dependency is another aspect to consider. Ras-
mussen et al. (2012) study a single-day problem with five
types of temporal precedences. Existing research on the
multi-period problem focuses on day-level temporal depen-
dencies. Some impose fixed visiting days (Begur, Miller,
and Weaver 1997; Trautsamwieser and Hirsch 2014), while
some assume service frequency, often handled by using pre-
defined service combinations as the input and let the model
decide the visiting days (Bennett and Erera 2011; Shao,
Bard, and Jarrah 2012; Nickel, Schröder, and Steeg 2012;
Yuan and Fügenschuh 2015). In our problem, we handle
both fixed visiting days, as well as visiting service frequen-
cies for patients with flexible availabilities.

With regards to handling uncertainties, we notice that
most of the existing works with uncertainties consider the
uncertain demands (Koeleman, Bhulai, and van Meersber-
gen 2012; Carello and Lanzarone 2014; Rodriguez et al.
2015; Bowers et al. 2015), whereas stochastic service or
travel times are rarely studied in HHCSP. Yuan, Liu, and
Jiang (2015) present an exact branch-and-price algorithm to
tackle a single-day problem with uncertain service times,
which solves small instances up to 50 patients. It focuses
on the penalty for late arrivals in the objective, instead of
enforcing the time windows. Errarhout, Kharraja, and Cor-
bier (2016) propose a two-stage model in a multi-period set-
ting to cater uncertain service times and solve the model
by CPLEX with instances up to 11 nurses and 75 patients.
However, time-windows and inter-visit temporal dependen-
cies are not respected. The introduction of uncertain dura-
tions makes the problems with time windows even harder to
solve. In this problem, we incorporate duration uncertainties
by enforcing a set of time window chance constraints.

In summary, to the best our knowledge, none of the exist-
ing works can be readily extended to handle our problem.

Home Health Care Scheduling Problem
In this section, we provide the formal definition for our
multi-period home health care scheduling problem, moti-
vated by the requirements from a leading home health care
and hospice company in Pittsburgh. The problem is defined
as the following tuple:

〈D, N, T, R, K〉

D denotes the set of days d for the scheduling horizon,
i.e., d ∈ D. Each day is discretized into minutes, indexed
from 1 to 1440. N represents the set of all nodes, N = Nt ∪
Nk, where Nt and Nk are the set of patient’ requested visit
locations and health care providers’ start and end locations,
respectively. T is the pairwise travel time matrix and tij ∈ T
denotes the travel time between node i and j.

R represents the set of patients’ requests, for the given
scheduling horizon, e.g., the next 7 days. Each request rep-
resents a service task to be specifically performed at a pa-
tient’s home. A request belongs to only one patient, and
a patient may specify several requests over the schedul-
ing horizon. Each request i is characterized by a tuple
〈ni, ai, wi, qreqi , {[oid, cid]}〉 where:

• ni ∈ Nt, ai and wi are the service location, service dura-
tion, units of work required by the request, respectively.

• qreqi is the service discipline specifying the type of service
that the request needs, e.g., speech therapy, skilled nurs-
ing, physical therapy, just to name a few.

• {[oid, cid]} refers to the set of available time windows,
during which a patient wish servicing of a request i to
be started. It is possible that a patient indicates several
available time windows for the same request i over dif-
ferent days d – e.g., Alice is free on Monday morning
and Thursday 2pm-4pm for a physical therapy treatment,
from which health care providers have to decide the best
time slot to allocate. More specifically, oid and cid are the
earliest and latest start-times for a time window [oid, cid].
If a provider arrives earlier than oid, he will wait until
the time window opens. While arriving later than cid will
lead to the violation of the time window constraint.

K represents the set of health care providers. Each health
care provider k ∈ K has a set of qualifications that he holds.
Typically, qualifications are flat and distinct, e.g., nurse, nu-
tritionist, and therapist. Each provider is constrained by an
availability time window [T 1

kd, T
2
kd] on each day d, i.e., he

will leave his start node N1
k at time T 1

kd, and return to the
end node N2

k before time T 2
kd.

A request is considered as completed if and only if a qual-
ified and available provider starts the service within the pa-
tient’s available time window and stays with the patient for
the whole service duration.

The goal is to schedule and route service providers for
home health care visits on a weekly basis that considers the
requirements from both patients and service providers. The
problem is further subject to the following considerations:



• Inter-visit Temporal Dependency: A patient may sub-
scribe several visits/requests over the same week. These
requests can be temporally dependent such that request
j has to be fulfilled at least D−ij days after and no more
than D+

ij days after servicing request i. Such inter-visits
dependencies are often seen in practice.

• Workload Fairness: A provider is paid a fixed salary as
long as he is working on a day. The company desires a
provider to service at least W− units of work on a daily
basis, if possible. At the same time, a maximum working
unit W+ is imposed, as overworking is not preferred.

• Continuity of Care: Each patient has a set of prioritized
provider candidates and is preferred to be visited by his
primary provider. This is important for patient satisfac-
tion, especially for patients with chronic conditions.

• Uncertain Durations: In real-world scenarios, travel and
service durations are usually uncertain. We assume travel
times tij and service times ai are random variables fol-
lowing certain distributions.

Mathematical Model
In this section, we first propose an ILP model for the de-
terministic problem, followed by incorporating the duration
uncertainties. Decision variables are summarized as follows:

Variables Descriptions

xdijk ∈ {0, 1} set to 1 if provider k serves request j right after i on day d.
ydik ∈ {0, 1} set to 1 if request i is assigned to provider k on day d.
vi ∈ {0, 1} set to 1 if request i is not assigned to any provider.
edik ∈ {1, ..., T} service start time of request i for provider k on day d.
fkd ∈ {0, 1} set to 1 if provider k is assigned with requests on day d.
pkd ∈ {0, 1} set to 1 if the route for provider k on day d is penalized.

Intuitively, reward will be collected if a request is com-
pleted by a provider. Let rik be the provider-dependent re-
wards, defined based on the units of work (wi) the request
needs and whether this provider is the patient’s primary
provider under this discipline( lik). Thus, we have:

rik = r · wi + r+ · lik,

where r is a constant base reward and r+ is the additional
reward assigned for the primary provider. The reward struc-
ture helps the continuity of care, where there is an incen-
tive to assign primary providers to patients, and promotes
the productivity, where higher reward will be collected for
request requiring more units of work. The bigger the r+, the
stronger the enforcement of care continuity.

The objective of this model is to generate a sequence of re-
quests to visit for each provider on each day that maximizes
the expected total rewards collected for the whole team con-
sidering the route penalties. γ is the amount of penalty in-
curred if a route does not meet the minimum workload.

Constraints (2) ensure each request is assigned at most
one provider over the entire scheduling horizon. As Kid de-
notes the set of providers who are qualified and available to
serve request i on day d, constraints (3) make sure that re-
quests will not be assigned to any unavailable or unqualified

max
∑
i∈Nt

∑
d∈D

∑
k∈K

rik · ydik − γ ·
∑
d∈D

∑
k∈K

pkd, (1)

vi +
∑
d∈D

∑
k∈K

ydik = 1, ∀i ∈ Nt, (2)

ydik = 0 ∀i ∈ Nt; d ∈ D; k ∈ {K \Kid}, (3){
D−ij −M(vi + vj) 6

∑
k∈K

∑
d∈D d · (ydjk − ydik)∑

k∈K
∑
d∈D d · (ydjk − ydik) 6 D+

ij +M(vi + vj),

∀i, j ∈ Nt, (4)

ydik 6 fkd, ∀i ∈ Nt; k ∈ K; d ∈ D, (5){
W− · fkd −

∑
i∈Nt y

d
ik · wi 6M · pkd,∑

i∈Nt y
d
ik · wi 6W+ ∀k ∈ K; d ∈ D, (6)

ydik 6
∑
j∈N

xdijk ∀i ∈ Nt; k ∈ K; d ∈ D, (7)

Table 1: The Deterministic Model-Part1

providers. Constraints (4) reflect requests’ inter-visit tem-
poral dependencies. Constraints (5) specify that a route ex-
ists when it contains any request. Constraints (6) enforce the
minimum and maximum workload requirements on every
route. M is a large positive number. If a provider works less
than W− units on a day, the route for that provider on that
day will be penalized (i.e., pkd = 1). Note, if a provider
is not assigned any requests on a day, it will not be penal-
ized, as there is no cost incurred by the health care company.
Constraints (7) bind the decision variables ydik with decision
variables xdijk, which ensure that requests are assigned only
when they can be visited.

The rest of the constraints (8) - (12) are provider-day
(k, d) level routing constraints. For each provider k ∈ K
on each day d ∈ D, the same set of constraints applies.


∑
j∈N x

d
ijk =

∑
j∈N x

d
jik,∑

j∈N x
d
ijk −

∑
j∈N x

d
jik = 1,∑

j∈N x
d
jik −

∑
j∈N x

d
ijk = 1,

∀i ∈ N \ {N1
k , N

2
k},

i = N1
k ,

i = N2
k ,

(8)

edik = T 1
kd, i = N1

k , (9)

edik + ai + tij − edjk 6M(1− xdijk), ∀i, j ∈ N, (10)

oid 6 edik 6 cid, ∀i ∈ Nt, (11)

edik 6 T 2
kd, i = N2

k . (12)

Table 2: The Deterministic Model-Part2

Constraints (8) ensure that every provider k starts and ends
at his specified nodesN1

k andN2
k and the connectivity of the

nodes. Note that, edik refers to the start service time of node
i. Early service or late service will cause the violation of the
request time window constraints. Constraints (9) initialize



the start service time of the start node for provider k. Tim-
ing consistency constraints are enforced in constraints (10).
For every provider k, if node j is visited immediately after
node i (i.e., xdijk = 1), the start service time edjk of node j
should be at least (ai+ tij) time units later than the start ser-
vice time edik of node i (also eliminates the subtours). Con-
straints (11) make sure that requests’ time windows are re-
spected. Finally, constraints (12) limit the time budget.

Modelling Duration Uncertainty
To incorporate the uncertain durations, we then extend the
deterministic model. We assume travel times tij and ser-
vice times ai are random variables following certain distri-
butions. We assume these distributions are given as problem
input, which can be derived from historical records obtained
from the home health care domain. Note that in the deter-
ministic model, these durations only affect the time window
and time budget constraints. Thus, to model duration uncer-
tainty, we replace the time window constraints (11) and time
budget constraints (12) by a set of chance constraints (13)
and (14), while the rest of the constraints remain the same
as the deterministic formulation. Thus, we have:

max Objective (1)

s.t. Constraints (2)− (10)

P (oid 6 edik 6 cid) > 1− α,∀i ∈ Nt; k ∈ K; d ∈ D (13)

P (edik 6 T 2
kd) > 1− α, ∀i = N2

k ; k ∈ K; d ∈ D. (14)

Table 3: The Chance Constrained Model

The chance constraints (13) and (14) enforce the probability
of satisfying the respective constraints are at least 1 − α,
α ∈ [0, 1]. α is the risk level, indicating the decision maker’s
level of conservativeness.

Solution Approach
The deterministic model of Table (1-2) can be solved by
commercial solvers such as CPLEX. However, it is not scal-
able with increasing number of providers and requests with
longer scheduling horizon. In this section, we propose to use
Lagrangian relaxation and dual decomposition to improve
its scalability.

Lagrangian Relaxation (LR) is a widely used technique
in combinatorial optimization, where we approximate the
original difficult primal problem by a simpler dual prob-
lem (Fisher 1981). The basic idea is to relax the compli-
cating constraints into the objective function and penalize
violations of the constraints using Lagrangian multipliers.

We relax constraints (7), which couple all the assignment
and routing decision variables together, into the objective
function by applying Lagrangian relaxation.

min L(λ) = −
∑
i∈Nt

∑
d∈D

∑
k∈K

ydik · rik + γ ·
∑
d∈D

∑
k∈K

pkd

+
∑
i∈Nt

∑
d∈D

∑
k∈K

λdik(y
d
ik −

∑
j∈N

xdijk). (15)

We then decompose the relaxed dual problem L( λ ) into
one assignment sub-problem, which assigns the requests to
the providers, and provider-day-level sub-problems, which
find the routes for the providers.
Assignment Sub-problem: The assignment sub-problem is
defined as:
min

∑
i∈Nt

∑
d∈D

∑
k∈K

ydik · (λdik − rik) + γ ·
∑
d∈D

∑
k∈K

pkd,

s.t. Constraints (2)− (6)

The assignment ILP model can be solved exactly by
CPLEX. To further scale up the sub-problem, we can apply
linear relaxation. The idea is to drop integer constraints for
decision variables, which transforms hard ILP problem into
an easier polynomial solvable linear problem (LP). In min-
imization problem, the objective value achieved by the LP
is always smaller or equal to that of the original ILP, thus it
can serve as a lower bound for the assignment sub-problem.
Routing Sub-problems: There are K · D independent
provider-day-level routing sub-problems for each provider
k and on each day d:

min−
∑
i∈Nt

∑
j∈N

λdik · xij , (16)

s.t. Constraints (8)− (12)∑
j∈N

xij 6 1, ∀i ∈ Nt, (17)

∑
i∈Nt

∑
j∈N

xij · wi 6W+. (18)

Constraints (17) and (18) are included to further tighten the
sub-problems, such that one node is visited at most once in a
route and the maximum workload is enforced (i.e., no more
thanW+ units of work in a route). This routing sub-problem
can be viewed as an orienteering problem, which is NP-hard.
Instead of solving the routing ILP, we develop a search algo-
rithm (1), that exploits the routing problem structure. During
the search phase, we systematically extend the routes and
discard unpromising dominated routes, which guarantees to
find the optimal routing solution. Before going into the al-
gorithm details, we first present the following observation.

Observation - Route Comparability: two feasible routes
are comparable if and only if they contain exactly the same
set of nodes and end at the same node, i.e., |r1| = |r2| and
rk1 = rk2 (assume k is the last node in the route).
Observation 1 holds because two feasible routes having the
same set of nodes with different visiting sequences and the
same ending node leads to the same objective value, and pro-
vides a fair starting point for further route extension.

For two comparable routes, route r1 dominates route r2 if
they are comparable and the total time for r1 is less than
the total time for r2. The intuition is that the route with
the shorter total time will have more room for future in-
sertion. In algorithm (1), we insert only nodes with posi-
tive Lagrangian multipliers(λdik) into the route to improve
the objective value. A node can be inserted into the route
if and only if all the time windows, time budget, and max-
imum workload constraints are satisfied (i.e., GETFEASI-
BLEREQUEST()). We start with a route with only one node,



i.e., the provider’s start location. At each iteration, non-
dominated routes from the last iteration are expanded by one
more feasible node. A node is considered as feasible if the
resulting extended route satisfies the time window and time
budget requirements. By doing so, routes of longer length
are generated. Only non-dominated routes will be stored and
dominated routes will be pruned. Note, with the dominance,
if there are several comparable routes with the same shortest
total time, we will keep just the first one. The search proce-
dure stops when no route can be further expanded.

Algorithm 1: BFS with Dominance Prunning
1 Input: (λd

ik, N)
2 R← INITIALIZE(), CONTINUE←TRUE
3 while CONTINUE do
4 for r ∈ R do
5 Nfeasible ← GETFEASIBLEREQUEST(r,N, λd

ik)
6 for n ∈ Nfeasible do
7 r

′
← EXTENDROUTE(r, n, λd

ik)

8 R ← UPDATENONDOMINATEDSET(r
′
, R)

9 end
10 end
11 CONTINUE ← CHECKCONTINUE()
12 end
13 r∗ ← UPDATEBEST(R)

Since all the sub-problems are independent from each
other, our decomposition based approach allows further par-
allelization for the sub-problems in the system implementa-
tion, which would largely speed up the solution approach.
Note, in the experiment section, sub-problems are run se-
quentially, without parallelization.

Solving the Lagrangian Dual
After dual decomposition, we can iteratively update the La-
grangian multipliers and solve the Lagrangian dual problem
through projected sub-gradient descent algorithm (Fisher
1981). At each iteration, sub-problems are solved given the
Lagrangian multipliers λt. Lagrangian multipliers are up-
dated through the master function:
λdik,t+1 := λdik,t + αt(y

d
ik −

∑
j∈N x

d
ijk) ∀i, k, d.

where the Lagrangian multiplier is increased if a request as-
signed is not fulfilled in the routing. The duality gap is evalu-
ated and the program is stopped if the termination condition
is met. We adopt a commonly used adaptive step function:
αt = µt · primal∗−dual(λt)∑

i∈Nt

∑
k∈K

∑Mk
m=1(ydik−

∑
j∈N xdijk)

2

w.r.t. λt

where dual(λt) is the summation of all sub-problem objec-
tives and primal∗ is the upper bound for the dual problem,
which is usually obtained by applying a heuristic to the pri-
mal problem(P). In this case, we use the best primal solution
obtained so far, as the upper bound for the dual problem.

In order to iteratively move towards the optimal solution
and determine the convergence, we need the best primal so-
lution with the dual solutions at each iteration. However,
dual solutions may not always result in a feasible primal
solution, as a request may appear in several routing solu-
tions. Let zdik =

∑
j∈N x

d
ijk where xdijk are the decisions

from routing sub-problems. To restore a good feasible pri-
mal solution from the routing solutions, we solve the fol-
lowing ILP:

min−
∑
i∈Nt

∑
d∈D

∑
k∈K

rik · ydik + γ ·
∑
d∈D

∑
k∈K

pkd, (19)

s.t. Constraints (2)− (6)

ydik 6 zdik ∀i ∈ Nt; k ∈ K; d ∈ D. (20)

To improve the scalability of primal extraction, we also
developed a greedy local search heuristic. Given routing so-
lutions as the base, we try to greedily resolve the conflicts of
same requests appearing in several routes and insert unas-
signed requests using local search heuristic (several local
search operations are used, such as insert, replace and etc).

Handling Duration Uncertainty
To solve the chance constrained model of Table (3), we
apply Sample Average Approximation (SAA) (Pagnoncelli,
Ahmed, and Shapiro 2009) to reduce realization set to man-
ageable size and convert the stochastic formulation into a de-
terministic one. We randomly generate a set of independent
and identically distributed samples, S = {ξ1, ξ2, ..., ξs},
for all tij and ai from the known distributions, and check
whether time window and time budget constraints are satis-
fied. Note, these duration distributions can be derived based
on the domain knowledge and historical data. We approxi-
mate the probabilities as:

P
(
oid 6 edik 6 cid

)
≈ |S+|/|S|

P
(
edik 6 T 2

kd

)
≈ |S+|/|S| (21)

where |S+| are the number of samples under which the
corresponding constraints are satisfied. Note that, when ap-
proximating chance constraints on a discrete set of samples,
it is important to identify a smaller risk threshold α

′
, where

α
′
< α. Since SAA replaces the original distributions with

empirical distributions obtained from the samples, a smaller
α
′

is used to hedge against the under-representation of the
limited samples.

The resulting formulation is an ILP, that still maximizes
the total collected rewards but also considers the constraints
over all the samples (the detailed formulation is omitted
here, due to the space limit). Similarly, the chance con-
strained criteria can be incorporated into our solution ap-
proach by modifying the routing sub-problems, i.e., specif-
ically the GETFEASIBLEREQUEST() Function in our spe-
cialized search routine. Now, feasible requests are generated
by checking the chance constraints over all the duration sam-
ples (against α

′
), instead of just the deterministic durations.

Sample selection heuristic: The scalability and quality
of the SAA method depend on the size and representative-
ness of the sample set. So instead of use a fixed large sam-
ple set S′, we use a small representative subset S ∈ S′,
where we try to select samples that are as different as possi-
ble. Intuitively, the smaller the durations, the lesser chance
of constraint violation. We first generate a large amount of
samples from the duration distributions, say |S′| = 1000.



We then sort the samples according to certain metric, i.e.,
ds =

∑
i∈N

∑
j∈N tij +

∑
i∈Nt ai. We then uniformly se-

lect |S| samples from |S′| based on the distances ds.

Experiments
In this section, we empirically demonstrate the efficiency
and effectiveness of our approaches on instances adapted
from a real world dataset.

Instance Generation: The problem instances consid-
ered in our experiments are adapted from a real-world
dataset from a leading home health care and hospice com-
pany in Pittsburgh, USA. The data contains one month of
visit-related information for September 2015. Each service
provider is characterized by start geo-coordinates and his
qualifications. Also, each patient is associated with a home
geo-coordinates and provider preferences. A patient may
have several visit records over the week. Each visit record
contains information such as a visit datetime, actual ser-
vice duration, type, discipline, and provider assigned. As the
dataset contains the actual visits information and not the in-
put requests for the scheduling, we need to generate the re-
quests from the dataset.

To broaden the analysis, we also synthetically generate
an additional set of problem instances with time windows,
inter-visit dependencies and duration uncertainties1. We first
retrieve the visits within the specified scheduling horizon
and the subregions. From the selected visits, we retrieve the
corresponding patients’ and providers’ information. Deter-
ministic pair-wise Haversine distances (i.e., great-circle dis-
tances) are computed based on their actual geo-information
and converted into travel times a priori (with a travel speed
of 30mph). We then synthetically generate some additional
patients’ request-related information, such as available time
windows and inter-visit dependencies. We assume visit i’s
start service time si is the mid point for request i’s time win-
dow. Two types of request time windows are then specified
as [si − tw/2, si + tw/2], with time-window width tw set
to 2 hours and 6 hours, denoted as ins-tight and ins-loose
respectively. 2-hour time-window is rather realistic while 6-
hour time-window provides more scheduling flexibility. To
reflect the inter-visit temporal dependencies, we randomly
select 40% of the patients and filter out the patients with
only one request. For each selected patient, we then syntheti-
cally generate [D−ij , D

+
ij ] for all his request pairs (i, j) ∈ Rk.

Additionally, we allow those selected requests to have sev-
eral available days, while the rest of the requests have to be
visited on the same days as the actual visits. Lastly, we as-
sume providers are available on the days of the visits, and
they work from 7am to 5pm. Provider-dependent rewards
are generated based on r and r+. Here, we assume the base
reward r is a fixed value of 100.

For stochastic instances, in lieu of having distributions
based on historical data, we assume durations t ∈ T (both

1Due to patient privacy concerns, it is not possible for us to
make actual problem data provided by the HHC Company publicly
available. However, the additional synthetically generated prob-
lems are accessible: sites.google.com/site/homehealthcarewebsite/

travel and service times) are normally distributed N
(
µt, σ

2
t

)
with µt equal deterministic durations and σt as 10 minutes.

Algorithms Compared: The performances and runtime
of our proposed methods depend on how sub-problems are
solved. To investigate the trade-off between the optimality
and the time performance, in the experiment section, we
evaluate the following four algorithms. The routing sub-
problems are solved by the search algorithm (1). These al-
gorithms differ from each other on how the assignment sub-
problem is solved and how the primal solution is extracted
at each iteration. More specifically, we have:
• DLR-E: Both assignment and primal extraction are solved

exactly by ILP formulation.
• DLR-H: This is the relaxed version of DLR-E, that solves

the assignment sub-problem by linear relaxation and pri-
mal extraction by the greedy local search heuristics.

• SLR-E/ SLR-H: Each extends DLR-E and DLR-H respec-
tively to handle duration uncertainties, by applying SAA
in the routing search procedure.
In all the experiments, the route penalty γ is set to 80. The

cut-off running time for all approaches is set to 10 minutes,
if not specified in experiments. Experiments were conducted
on a machine with i7-4790 CPU@3.6GHz and 32 GB RAM.

Experimental Results
We first compare the scalability of exact ILP with DLR. Af-
ter running CPLEX for exact ILP on small instances (e.g.,
(D, R, K)=(7, 359, 44)) for 2 hours, it turns out that optimal-
ity cannot be reached and running out of memory. Our ap-
proaches can return good solutions within 10 minutes even
for large-scale instances up to size (D, R, K)=(7, 4203, 273).

Results on Deterministic HHCSP: We first compare
the quality of the schedules produced by our LR-based
approaches against the actual schedules derived from
company-provided visit data. This instance is of size (D, R,
K)=(7, 2062,199), where all the requests have fixed visit-
ing days and no time windows. To compare the trade-off
between generating more valid routes and assigning more
primary providers, we test the instance with different r+ ∈
{100, 50}. Results are summarized in Table (4). Metrics are
measured in percentage of relative difference, normalized by
those of the actual visits. Table (4) shows that LR-based ap-
proaches improve the objective value by at least 10%. The
number of route metric is measured in terms of route reduc-
tion. DLR-E generates fewer routes compared to the others,
i.e., less manpower required from the company. In terms of
workload fairness, we compare the number of valid routes
generated by each approach. A route is valid if it meets the
minimum and maximum workloads. The more valid routes
generated, the better. Again, DLR-E outperforms the rest.
For continuity of care, we compare the total number of pri-
mary providers assigned. Both LR-based approaches sub-
stantially assign more primary providers compared to actual
visits, especially DLR-H. Results also show that increasing
r+ biases the solutions towards more primary providers as-
signed, a smaller r+ tends to generate solutions with fewer
routes. This demonstrates the flexibility of our methods on
generating solutions for different focuses.



r+
Objective No. of Routes No. of Valid Routes Primary Assigned
DLR-E DLR-H DLR-E DLR-H DLR-E DLR-H DLR-E DLR-H

100 20.32% 19.72% -2.59% 0.00% 17.65% 0.74% 46.12% 47.25%
50 14.79% 12.27% -13.45% 0.17% 52.21% -3.68% 37.23% 46.65%

Table 4: Comparison of DLR-E and DLR-H against the actual schedules on one instance of size (D, R, K)=(7, 2062, 199) with different r+.

Instance
type

DLR-E DLR-H
gap% tPerItr(s) gap% nGap% tPerItr(s)

ins-tight 4.46% 137.01 10.52% 6.03% 53.72
ins-loose 0.27% 132.97 7.71% 3.08% 54.26

Table 5: Comparison on synthetic instances with time-windows,
temporal dependencies and (D, R, K)=(7, 2062, 199).

Table (5) describes the key results on the performance
comparison between the DLR-E and DLR-H on both ins-
tight and ins-loose instances with time-windows and inter-
visit dependencies. Results are averaged over 10 random in-
stances of each instance type. The gap here refers to the gap
between the best primal and the best dual solution found. It
clearly shows that both DLR-E and DLR-H are able to get
provably near-optimal solutions, with optimality gaps less
than 4.46% for DLR-E and 10.52% for DLR-H. nGap rep-
resents the normalized gap, which is calculated as the per-
centage difference between the best primal solution found by
DLR-H and the best dual solution found by DLR-E (tighter
lower bound). We can see that the actual optimality gaps
for DLR-H should be smaller than nGap, i.e., less than 6%
on both instances. tPerItr represents the runtime per itera-
tion. DLR-E provides better solution quality while DLR-H
provides a trade-off between solution quality and runtime,
which finds good solutions within a shorter time.

Results on Stochastic Extension: Due to durational un-
certainties, there is a probability that a request cannot be
served within the time window or that a route may exceed its
time budget. In this section, we examine the solution quality
based on 1000 random duration realizations. Results are av-
eraged over 10 random instances of each instance type and
an instance is evaluated over all the realizations. In the ex-
periments, we set our risk level α as 0.3. The smaller the α′
we set, the more conservative we are against the representa-
tiveness of the selected samples. Meanwhile, increasing the
sample size leads to better approximations for the real distri-
butions, but less efficient. Based on our initial set of param-
eter experiments (omitted here due to space limit), we set α′
as 0.15 and sample size as 60. Samples are generated using
our sample selection heuristic.

We focus on two evaluation metrics: 1) Chance constraint
violation ratio, the number of chance constraints that are vi-
olated, normalized by the total number; 2) Expected objec-
tive, the average objective value achieved by the solution.
For these results, a chance constraint is considered as vio-
lated if more than α · 1000 times over the 1000 realizations
(α = 30% here), this constraint is not satisfied. The expected
objective is calculated as the sum of provider-dependent re-
wards of all requests, whose time window chance constraints
are not violated, averaged over the random instances.

Expected Obj TW Violations TB Violations
DLR-E: mean 382600 76.7/1987.2 14/508.2
DLR-H: mean 387470 65.9/1991.3 11.6/531
DLR-E: max 319780 0/1597.4 0/512.2
DLR-H: max 340320 0/1708.6 0/551.9
SLR-E 388350 0.2/1938 0 /511
SLR-H 394090 0.1/1960 0 /534

Table 6: Results on synthetic instances of ins-tight with (D, R,
K)=(7, 2062, 199). TW denotes time-window chance constraints,
while TB refers to the time budget chance constraints.

We compare the stochastic extensions with both determin-
istic approaches, DLR-E and DLR-H. We evaluate the deter-
ministic approaches with two set of duration input from the
distributions: mean and maximum durations. We use the du-
rations that are 2σ upper away from the means, i.e., 97.75%
percentile, to approximate the maximum values.

We can observe from Table (6), our deterministic ap-
proaches with mean-duration are sensitive to duration un-
certainties on ins-tight instances, where time window chance
constraints and time budget chance constraints can be easily
violated. On the other hand, deterministic approaches with
max-duration can guarantee services and travel. However,
they suffer from worse expected objectives, where providers
are underutilized. While both SLR-E and SLR-H, are robust
towards the stochasticity, achieving almost no violations of
the chance constraints. Stochastic approaches slightly out-
perform the deterministic counterparts with mean-duration
on expected objective values and they substantially outper-
form the deterministic counterparts with max-duration on
this metric. Thus, more sophisticated approaches, i.e., our
stochastic approaches, to model uncertainty are warranted.

Conclusion

We investigate the multi-period HHCSP problem driven by
the real-world needs. An integer linear programming model
is proposed to formulate the deterministic problem. We fur-
ther extend it with chance constraints to handle stochastic
travel and service times, which is useful for real-world sit-
uations. Subsequently, to develop a solution that can scale
to city-scale scenarios, we apply the Lagrangian relaxation
and exploit the separable problem structure to decompose
the formulation into smaller sub-problems. Finally, we solve
the chance constrained problem by applying sample average
approximation. With this sampling based approach incorpo-
rated, as long as there is a distribution simulator driven by
the historical duration data, we can provide proactive solu-
tions, which react well to potential uncertainties.
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